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1 Introduction

In the context of DEB theory, the feeding rate of an organism as a function of food density X is

usually given in C−moles per surface area or volume by

J̇X = fJ̇Xm,XK

(X), (1.1)

where for each α, β > 0

fα,β(x) =
αx

x+ β
, x ≥ 0, (1.2)

and J̇Xm and XK are constants (respectively the maximum ingestion rate and the saturation

coefficient); see p. 73 of Kooijman (2000). In connection with biological quantities such as J̇X ,

a function of X is known as a functional response, and the particular class of functions defined

by (1.2) is called a hyperbolic (or type II, or Holling type II) functional response.

Experimental data shows that the hyperbolic functional response provides a good approx-

imation to a variety of phenomena that conceptually reduce to that of the ingestion of a substrate

by an organism; see p. 74, and in particular Figure 3.6, of Kooijman (2000) for examples. The

main theoretical explanation for this success is based on a feeding model in which ‘meals’ appear

in time as points of a Poisson process, a meal is accepted by the organism if and only if the

organism is not busy ‘processing’ a previous meal, and the processing times are independent

exponential random variables; see p. 74 of Kooijman (2000). This same model, possibly with

some variations, is used elsewhere in DEB theory, for instance in specifying the behaviour of

Synthesizing Units (SU) and in studying the variability of growth at the population level in

terms of feeding behaviour (cf. Kooijman (2000), pp. 43-48 and pp. 221-222); it is a special case

of the well-known Type I counter model from renewal theory (eg. Karlin and Taylor (1975)).

In this essay we study very briefly the problem of whether the assumption that the meal

arrivals form a renewal process rather than a Poisson process still allows a hyperbolic functional

response. This question could be of some interest in connection with the closure property of the

class of hyperbolic functional responses with respect to composition.
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2 Renewal processes

Let X1, X2, . . . be a sequence of non-negative, independent and identically distributed (i.i.d.)

random variables with distribution function (d.f.) F . The renewal process associated with this

sequence is the sequence of partial sums Sn = X1 + · · · + Xn, n ∈ N, and the corresponding
counting renewal process is the process defined by Nt = min{n ∈ N : Sn ≤ t} for t ≥ 0. A

renewal process is best visualized as a random sequence of points on a horizontal ‘time’ axis;

relative to an origin specifying the beginning of time, the first point occurs at time S1, the

second at time S2, and so on, the distances between successive points being X1, X2,, etc. To

this picture we can add a vertical axis in which the values of Nt are represented as a function of

t: since by definition Nt counts the number of points lying in the portion [0, t] of the horizontal

axis—the number of points occurring up to and including time t—, we see that the counting

renewal function t → Nt is a right-continuous step function increasing from 0 to ∞ by integer

steps at the renewal points S1, S2, . . .

Among the various results about renewal processes we need to mention two. Let λ−1 :=

E(X1) and define the renewal function by m(t) = E(Nt) (t ≥ 0); then under very general

conditions

lim
t→∞

Nt

t
= λ with probability 1, and lim

t→∞
(m(t+ h)−m(t)) = λh. (2.1)

A Poisson process is a renewal process in which X1, X2, . . . are exponentially distributed random

variables, i.e., such that F (x) = 1 − e−x/λ, x ≥ 0, for some λ > 0. In the case of a Poisson

process the renewal function is given by m(t) = λt, so that the second result in (2.1) can be

strengthened to m(t+ h)−m(t) = λh for all t, h ≥ 0.

3 The feeding model in terms of renewal processes

To describe the feeding model in terms of renewal processes let us suppose that X1, X2, . . .

represent the intervals between successive arrivals of meals (substrates, nutrients...). Then, with

λ as above, the first statement in (2.1) says that with high probability we have, for large t,

Nt/t ≈ λ, i.e., that the density of meal arrivals in the interval [0, t] is approximately λ; and

the second statement says that, after the organism has been feeding for a while, the expected

number of meal arrivals in the interval (t, t+ h] is about λh.
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It seems reasonable to assume that an organism needs time to process (eat, digest,...) meals,

and that while busy processing a meal it may reject arriving meals. Thus let us assume that the

sequence of processing times is a sequence of i.i.d. random variables Y1, Y2, . . . , independent of

X1, X2, . . . , with d.f. G and mean µ
−1 := E(Y1). Moreover, let us assume that feeding begins at

the origin with the processing of one meal that lasts for Y1 time units. Then any meal arriving

in the interval (0, Y1] is rejected, and the first meal to be accepted and processed is the first

meal that arrives after Y1, which occurs at time

Z1 = SNY1
+1.

At time Z1 a new cycle begins: during the Y2 time units taken to process the first accepted

meal, i.e., during the interval (Z1, Z1 + Y2], all arriving meals are rejected, and the second meal

to be accepted and processed is the first meal that arrives after Z1 + Y2, which occurs at time

Z1 + Z2 = SNZ1+Y2
+1.

The cycle proceeds at time Z1+Z2 with the processing of the second accepted meal; in general,

the n−th accepted meal arrives at time

S̃n := Z1 + Z2 + · · ·+ Zn = SNZ1+...+Zn−1+Yn
+1, n = 1, 2, . . .

It can be seen that Z1, Z2, . . . , the sequence of intervals between ingested meals, is also i.i.d., so

that the sequence S̃1, S̃2, . . . of accepted meals is also a renewal process.

Writing

1

µF,G
:= E

(

SNY1
+1 − Y1

)

and
1

ν
:= E(Z1) =

1

µ
+

1

µF,G

and applying (2.1) we can conclude that the density of ingested meals during the interval (0, t]

is with probability 1 approximately equal to

ν =
µµF,G
µ+ µF,G

≡ fµ,µ(µF,G), (3.1)

a hyperbolic functional response in µF,G, and that the expected number of ingested meals during

the interval (t, t+ h] is approximately

νh = fµ,µ(µF,G)h. (3.2)

If the arrivals form a Poisson process then the random variable SNY1
+1 − Y1 has the same

distribution as X1—the exponential distribution with parameter 1/λ—, so that µF,G = λ and

the quantities in (3.1) and (3.2) reduce to

fµ,µ(λ) and fµ,µ(λ)h,

which lead to (1.1).

The fact that the class of hyperbolic functional responses is closed under composition (i.e.,

that fα,β (fα′,β′(x)) = fα′′,β′′(x) with α′′, β′′ determined from α, β and α′, β′) is regarded as
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important for explaining the regulation of metabolic pathways (Kooijman (2000), p. 75). If

in the feeding model now described meals are replaced by substrates, processing of meals is

regarded as ‘production’, and ‘products’ take the place of ingested meals, then what we get is a

model for a SU. In a metabolic pathway, the products originating from a SU are not regarded

as final products but rather as ingredients to be processed by other SU’s, in which case it is

important to be able to make statements such as (1.1) at each step of the pathway. Unless the

d.f. G of the processing time is of a very special form (a mixture of an exponential d.f. and a

d.f. concentrated at 0), the output process of a SU (the process of ingested meals in a feeding

model) with Poisson arrivals will not form a Poisson process, but merely a renewal process.

Since one would also like to state something like (1.1) for the next SU in the metabolic pathway,

it may seem desirable, at least in some situations, to consider not just Poisson but more general

renewal processes as arrival processes. The idea is thus to see whether by requiring only the

arrival and production mechanisms to have the same struture—that of renewal processes—the

approximate density of ingested meals/transformed products can still be given in the form of a

hyperbolic response of the arrival rate.

Of course, in general µF,G is not just a function of λ, but we can argue heuristically to get

an approximation for it in terms of λ and of σ2 := Var(X1). For large t,

E (SNt+1 − t) ≈
λ−1 + λσ2

2
,

so if the processing times are typically not too small then

1

µF,G
= E

(

SNY1
+1 − Y1

)

≈
λ−1 + λσ2

2
=
1 + (λσ)2

2λ
,

whence

ν ≈
µλ

λ+ µ (1 + (λσ)2) /2
.

In terms of the feeding model, this gives us an approximate formula for the functional response

as a function of the food density and of the variability of the intervals between meal arrivals.

If the coefficient of variation of the intervals between meal arrivals does not vary much as a

function of λ, say λσ ≈ c for a range of values of λ and a constant c, we have the further

approximation

ν ≈
µλ

λ+ µ(1 + c2)/2
= fµ,µ(1+c2)/2(λ),

yielding an approximately hyperbolic response function.
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