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In the biological sciences mathematical models are indispensable. Nowadays much effort is done in 

building realistic models to describe complex systems in relatively simple formulas. Generally, the 

resulting formulas are differential equations based on ideas about the mechanisms underlying the 

observed phenomena. Most models used in practice, are completely deterministic. The DEB model 

is an example of such an approach. It is deterministic, apart from the stochastic component in death 

by aging. 

When models are confronted with experimental data to test their adequacy or to estimate 

parameters, there will always be some discrepancy between model and data. Usually littl e attention 

is given to the origin of this discrepancy. It is just called measurement error or noise, suggesting 

that, in case of a ‘ true’ model, the discrepancy could be diminished or even removed by better 

experimentation. This vision is seldom correct. In most cases there is some inherent stochasticity 

one can never get rid of.  Stochastic data ask for stochastic models, so the deterministic model must 

be changed or extended to a stochastic model. There are several options to incorporate stochastic 

elements in deterministic models.  

To be more specific, let us look at the following example.  Suppose we have a mathematical model 

describing the dynamics of a pollutant in an animal. The model can be formulated as a differential 

equation for the internal concentration C(t): 

C'(t) = kuc - keC(t) 

where ku is the uptake rate, ke the elimination rate and c the (constant) environmental concentration. 

If we want to estimate parameters from data (t1,C1), (t2,C2), …,  (tn,Cn), we have to make the model 

stochastic. The usual regression approach is to add a stochastic variable to the model function C(t), 

based on the idea of ' additive noise' . See figure 1a. The deviations between observations Ci and 

model function C(ti) are considered as stochastic variables ei 

Ci = C(ti) + ei  with ei  ~  N(0, σ2) 

or 

Ci  ~  N(C(ti), σ
2) 

A lot of methods are available to estimate parameters.  

The approach mentioned above are based on a set of f ixed parameter values, i.e. they all use one 

model function for the whole data set. In other words, every data point is supposed to obey the 

same model function. This is not always realistic.  For instance, in case of one observation per 

animal this is a very questionable assumption. Animals are not equal, due to genetic or site-specific 



differences for instance. A more realistic approach is then to give each animal its own set of 

parameter values. A random sample of animals results in a random sample of parameter-value sets 

and so in a random sample of model functions. In other words, the parameters are considered to be 

stochastic. See figure 1b.  A third possibility to implement stochasticity is to consider the animal as 

a deterministic system with a stochastically changing input. Especially if data are from one 

individual this can be realistic. A fourth possibili ty is to describe the system in terms of stochastic 

differential equations. In the case of DEB this could easily lead to inconsistencies because of the 

conservation laws of mass and energy. 
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Figure 1. Relation between a data set and the model C'(t) = kuc - keC(t) in two different ways.  

a. (left) Regression model. Stochastic deviations between model function and data.  

b. (right) Stochastic parameters. Each data point has its own model function.  

 

In this essay we discuss the second approach. In the context of DEB theory this may easily lead to 

an explosions of the number of parameters. If we look for instance to the description of growth 

under constant food density (equation 3.20 in the DEB book), we have to deal with the following 

parameters: Vm, Vh, kM, v, Vb and XK. If we want to describe all parameters as stochastic variables, 

we have to choose classes of distributions. (I think that DEB theory does not give any clue to what 

kind of distribution is reasonable for this purpose.) Gamma distributions, or log-normal 

distributions are obvious candidates (they give positive valued real numbers). But then the 

minimum number of parameters equals 12, if we assume that all these random variables are 

independent. Actually we deal with some multivariate distribution. 

But we have to keep li fe simple. Not only to keep things manageable, but also to have the 

complexity of the stochastic part in balance with the complexity of the deterministic part of the 

model. An escape from this problem is to use the argumentation given on page 334 in the chapter 

'Living together'. There variation between parameters of individual organisms of one species is 

assumed to behave like variation between parameters of different species. That elegant assumption 

only leads to two additional parameters, if we model the zoom factor z (see Table 8.1) with a log-



normal or a Gamma distribution. Does that give rise to the type of randomness that we observe in 

experimental data? Therefore we have to work out how the above parameters depend on the zoom 

factor z. It is easy to see from the definitions that Vh, kM and v do not depend on z and Vm, XK and Vb 

are proportional with z. 

What about V � ? If we consider two individuals with values V ���  and V ���  the relationship is more 

complex: 

V ��� 1/3 = f2Vm2
1/3  -  Vh2

1/3 = (1 + XK1z/X)-1Vm1
1/3z – Vh1

1/3. 

This cannot be expressed easily in terms of V ���  . Even if we take food ad libitum (X >> XK) we still 

do not get V ���  = zV ��� , unless we observe ectotherms (Vh = 0). 

The von Bertalanffy growth rate depends on four of the above parameters, in a non-linear way. 

That leads to 

rB2 = (3/km1 + 3(1 + XK1z/X)-1Vm1
1/3z/v1)

-1. 

If f ood density is high we get  

rB2 = (3/km1 + 3Vm1
1/3z/v1)

-1. 

The theoretical distribution of (volumetric) length measurements will be very difficult to derive. A 

simulation study could give more insight into this point, but that is beyond the scope of this essay.  

 

What do we learn from this exercise? DEB theory gives a clue for including stochasticity in 

deterministic models. The formulae can be worked out, but they will be very difficult to apply. We 

still have to choose classes of distributions, and in case of more observation per individual, we have 

to include intra-individual stochasticity to complete the story. 

 


