Modeling stochasticity in biological data
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In the biological sciences mathematicd models are indispensable. Nowadays much effort isdore in
building redistic models to describe cmmplex systems in relatively ssmple formulas. Generally, the
resulting formulas are differential equations based onideas abou the mechanisms underlying the
observed phenomena. Most models used in pradice are cmpletely deterministic. The DEB model
is an example of such an approad. It is deterministic, apart from the stochastic comporent in deah
by aging.
When models are onfronted with experimental data to test thelr adequacy or to estimate
parameters, there will always be some discrepancy between model and data. Usually littl e atention
is given to the origin o this discrepancy. It is just cdled measurement error or noise, suggesting
that, in case of a ‘true’ model, the discrepancy could be diminished or even removed by better
experimentation. This vision is sldom corred. In most cases there is ome inherent stochasticity
one can never get rid of. Stochastic data ask for stochastic models, so the deterministic model must
be changed o extended to a stochastic model. There ae severa options to incorporate stochastic
elementsin deterministic models.
To be more spedfic, let uslook at the following example. Suppcse we have amathematicd model
describing the dynamics of a padlutant in an animal. The model can be formulated as a differential
equation for theinternal concentration C(t):

C'(t) = ke - kC(1)
where k; is the uptake rate, ke the di mination rate and ¢ the (constant) environmental concentration.
If we want to estimate parameters from data (t;,C,), (t,,C,), ..., (tn,C), we have to make the model
stochastic. The usual regresson approach is to add a stochastic variable to the model function C(t),
based onthe ideaof ' additive noise' . Seefigure 1la. The deviations between olservatio and
model function C(t;) are mnsidered as gochastic variables g

G=C(t) +e withe ~ N(O, o)
or

G ~ N(C(t), o)
A lot of methods are available to estimate parameters.
The gproach mentioned above ae based ona set of fixed parameter values, i.e. they all use one
model function for the whole data set. In ather words, every data point is suppcsed to obey the
same mode function. This is not always redistic. For instance, in case of one observation per

animal thisis avery questionable assumption. Animals are not equal, due to genetic or site-spedafic



differences for instance. A more redistic goproach is then to give eah anima its own set of
parameter values. A random sample of animals results in a random sample of parameter-value sets
and so in a random sample of model functions. In other words, the parameters are ansidered to be
stochastic. Seefigure 1b. A third passhbility to implement stochasticity is to consider the animal as
a deterministic system with a stochasticdly changing inpu. Espeddly if data ae from one
individual this can be redistic. A fourth posshility is to describe the system in terms of stochastic
differential equetions. In the case of DEB this could easily lead to inconsistencies because of the

conservation laws of mass and energy.
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Figure 1. Relation ketween a data set and the model C'(t) = k,C - kC(t) in two different ways.
a (left) Regresson model. Stochastic deviations between model function and cata.
b. (right) Stochastic parameters. Each data point has its own model function.

In this essay we discussthe second approacd. In the mntext of DEB theory this may easily lead to
an explosions of the number of parameters. If we look for instance to the description d growth
under constant food density (equation 3.20in the DEB book), we have to ded with the following
parameters. Vi, Vi, Ku, V, Vp and X. If we want to describe dl parameters as gochastic variables,
we have to chocse dasses of distributions. (I think that DEB theory does nat give any clue to what
kind o distribution is reasonable for this purpose) Gamma distributions, or log-normal
distributions are obvious candidates (they give positive valued red numbers). But then the
minimum number of parameters equals 12, if we asaume that all these random variables are
independent. Actually we ded with some multivariate distribution.

But we have to keep life simple. Not only to keep things manageable, bu aso to have the
complexity of the stochastic part in balance with the cmmplexity of the deterministic part of the
model. An escgpe from this problem is to use the argumentation given on page 334 in the dhapter
‘Living together'. There variation between parameters of individual organisms of one spedes is
asumed to behave like variation between parameters of different spedes. That elegant assumption

only leals to two additional parameters, if we model the zoom factor z (see Table 8.1) with alog-



normal or a Gamma distribution. Does that give rise to the type of randomnessthat we observe in
experimental data? Therefore we have to work out how the dowve parameters depend onthe zom
fador z It is easy to seefrom the definitions that V, ky and v do rot depend onz and Vi, Xk and V,,
are proportional with z
What abou V,,? If we consider two individuals with values V..; and V.., the relationship is more
complex:

Voo = £V - Vie™® = (1 + X1z X) Vi 2 = Vi 2.
This canna be expressd easily interms of V., . Even if we take foodad libitum (X >> Xk) we till
do nd get V.,; = 2V, unlesswe observe edotherms (Vi = 0).
The von Bertalanffy growth rate depends on four of the @owve parameters, in a nonlinea way.
That leads to

rez = (ke + 3(1 + Xk1Z/X) Vi *zva) ™.
If food cbnsity is high we get

rgz2 = (3/kn + 3V *2/v) ™.
The theoreticd distribution d (volumetric) length measurements will be very difficult to derive. A

simulation study could give more insight into this point, but that is beyondthe scope of this essay.

What do we learn from this exercise? DEB theory gives a due for including stochasticity in
deterministic models. The formulae can be worked ou, but they will be very difficult to apply. We
still have to choase dasses of distributions, andin case of more observation per individual, we have
toinclude intra-individual stochasticity to complete the story.



