A decline of food abundance in the
non-breeding habitat may increase
resilience of migratory populations
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How is energy used?
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The change in food experienced when they switch habitat
affects the allocation between structure and storage

Energy density (kJ g)
P

Length (cm)

MacFarlane, 2010. Energy dynamics and growth of Chinook salmon (Oncorhynchus tshawytscha) from the Central
Valley of California during the estuarine phase and first ocean year. Can. J. Fish. Aquat. Sci. 67:1549-1565.
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How is the energy reserves before migration?
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And after migration?
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Population consequences of ocean food decline
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Growth and dynamics in the field
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Growth and dynamics in the field
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Annual survival of migrants

High food availability in the ocean causes extinction
when the cost of migration high
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Annual survival of migrants

High food availability in the ocean causes extinction
when the cost of migration high
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" We build dams in short period of time
Is that time enough for selection to act?

" The peak of dams building coincide
with the decline in food abundance in

the ocean

This decline may have prevented a larger
collapse of populations

" Climate change predict declining in

ocean productivity
Good for persistence, bad for fisheries
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S.A.L.M. Kooijman, 1986. Population dynamics in the basis of budgets.

Auer, S., et al, 2010. Juvenile compensatory growth has negative consequences for reproduction in Trinidaadian guppies (Poecilia reticulata)

Pollux, B. J. A., & Reznick, D. N. (2011). Matrotrophy limits a female’s ability to adaptively adjust offspring size and fecundity in fluctuating environments.
Functional Ecology, 25(4), 747-756
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Larger fish requires more energy per g
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MODEL o Population level

Size structured population model

Breeding habitat (river) Wintering habitat (sea)

Density-dependence No density-dependence
dR : ,
/ .
dtr - p(Rmax - R?") — 1, Zni Wl 3 R; is constant
i=1
f = R, f; is constant




RESULTS Impact on reproduction
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Habitat switch Energetic cost Individual life history

Journal of Fish Biology (1993) 42, 485-508

Fecundity and egg size variation in North American Pacific
salmon (Oncorhynchus)

T. D. BEAciaM AND C. B. MURRAY

Journal of Fish Biology (2006) 69, 860869
doi:10.1111/5.1095-8649.2006.01160.x, available online at http://www.blackwell-synergy.com

Life-history effects of migratory costs in
anadromous brown trout

B. JonssoN® AND N. JONSSON



RESULTS o Why does low food allow persistence?

Aquaculture Research, 2001, 32, 963-974

Weight gain and lipid deposition in Atlantic salmon,
Salmo salar, during compensatory growth: evidence
for lipostatic regulation?

S J S Johansen®, M Ekli, B Stangnes & M Jobling

Norwegian College of Fishery Science, University of Tromse, N-9037 Tromsae, Norway

tested in two trials in which feed-restricted or
-deprived postsmolt Atlantic salmon, Salmo salar,
became hyperphagic after transfer to excess feeding.
At the end of the first trial, previously feed-restricted
fish had fully compensated for their lost weight gain
compared to continuously fed control fish, but had a
leaner body composition (i.e. reduced energy stores)

and were still showing signs of compensatory
growth. In the second trial, feed deprivation drained
body lipids and caused a stronger hyperphagic
response than restrictive feeding, although it took



RESULTS Why does low food in the sea allows persistence?
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RESULTS o Why does low food allow persistence?
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RESULTS o Why does low food in the sea allow persistence?
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RESULTS o Why does low food in the sea allow persistence?
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RESULTS o Why does low food in the sea allow persistence?
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