Unexpected dynamics (including canard explosion) of fast-slow bitrophic food chains

Bob W. Kooi

Dept. Theoretical Biology, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

and

J.C. Poggiale

Aix-Marseille University, UMR 7294 MIO OCEANOMED 163 Avenue de Luminy case 901, 13009 Marseille, France

bob.kooi@vu.nl
http://www.bio.vu.nl/thb/

Canard: Van der Pol equation (Eckhaus 1983)

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

- In the classical Rosenzweig-MacArthur (RM) model in absence of the predator the prey grows logistically and nutrients are not modelled
 - Fast-slow dynamics,
 - Singular perturbation technique,
 - Canards
- In mass balance (MB) chemostat model this nutrient is explicitly modelled
 - Bifurcation analysis

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

Rosenzweig-MacArthur predator-prey model RM_1 -model, variable efficiency

$$\frac{dx_1}{dt} = f(x_1, x_2, \varepsilon) = x_1(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1})$$
$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon) = \varepsilon x_2(\frac{a_1 x_1}{1 + b_1 x_1} - 1)$$

	T 1 1 1
parameter	Interpretation
t	Time variable
x_1	Prey density
x_2	Predator biomass density
a_1	Searching rate
b_1	Searching rate \times handling time
ε	Efficiency and predator death rate

The hyperbolic relationship

$$F(x_1, x_2) = \frac{a_1 x_1}{1 + b_1 x_1}$$

- Ecology: Holling type II functional response
- Biochemistry: Michaelis-Menten kinetics

Derivation using time-scale separation: searching and feeding is much faster than population physiological processes, such as growth

Here the parameters are: $a_1 = b$; searching rate $b_1 = b/k$; searching rate × handling time

The biological interpretation of ε is the yield in Microbiology, or assimilation efficiency in Ecology and here besides a time-scale parameter also predator death rate factor

Bifurcation analysis of RM_1 predator-prey model

$\frac{dx_1}{dt}$	$= x_1(1$	$(-x_1 - \frac{a_1 x_2}{1 + b_1 x_1})$
$\frac{dx_2}{dt}$	$= \varepsilon x_2($	$(\frac{a_1x_1}{1+b_1x_1}-1)$
	Bifur	cation Description
	TC	Transcritical bifurcation: invasion through boundary equilibrium
	T	Tangent bifurcation: collapse of the system
	Н	Hopf bifurcation: origin of (un)stable limit cycle

Literature ($\varepsilon = 1$):

Yu. A Kuznetsov, *Elements of Applied Bifurcation Theory*, Applied Mathematical Sciences 112, Springer-Verlag, 2004

$\label{eq:RM1-model} \begin{array}{l} \mathsf{RM}_1\text{-model} \\ \mathsf{One-parameter\ diagram\ } x_i \ \mathrm{vs\ } b_1\text{:} \ a_1 = 5/3\,b_1\text{,} \ \epsilon = 1 \end{array}$

Transcritical TC, Hopf H bifurcations

Transient dynamics $b_1 = 3$ and $b_1 = 8$, $\varepsilon =$

fast system

$$\frac{dx_1}{dt} = f(x_1, x_2, \varepsilon)$$
$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon)$$
$$layer \text{ system}$$

$$\varepsilon \to 0$$
$$\frac{dx_1}{dt} = f(x_1, x_2, 0)$$
$$\frac{dx_2}{dt} = 0$$

slow system $\tau = \varepsilon t$

$$\varepsilon \frac{dx_1}{d\tau} = f(x_1, x_2, \varepsilon)$$
$$\frac{dx_2}{d\tau} = g(x_1, x_2, \varepsilon)$$
$$reduced \text{ system}$$

$$\varepsilon \to 0$$
$$0 = f(x_1, x_2, 0)$$
$$\frac{dx_2}{d\tau} = g(x_1, x_2, 0)$$

Evolution of the slow variable on critical manifold

Introduce the function

$$x_2 = q(x_1) = \frac{1}{a_1}(1 - x_1)(1 + b_1x_1)$$

Formally from

$$\frac{dx_2}{d\tau} = g(x_1, q(x_1)) = \frac{dq}{dx_1} \frac{dx_1}{d\tau}$$

we get

$$\frac{dx_1}{d\tau} = \frac{q(x_1)(a_1x_1 - (1 + b_1x_1))}{\frac{dq}{dx_1}}$$

It describes the slow dynamics on the critical manifold: the parabola $f(x_1, x_2, 0) = 0$.

Note that this expression is zero at the top of the parabola point $(\overline{x}_1, \overline{x}_2)$ where $\overline{x}_1 = (b_1 - 1)/(2b_1)$

This point is a fold point, the denominator is at that point zero

For $b_1 = 4$ (Hopf bifurcation) also the numerator is zero since it is also an equilibrium

Then slow flow is possible in that fold point because the zero's cancel

Slow dynamics

Geometric singular perturbation techniques (N. Fenichel 1997, G. Hek 2010)

Approximations techniques slow manifolds, $x_2 = q_{\varepsilon}(x_1)$

Using its invariance the perturbed manifold $\mathcal{M}^1_{\varepsilon}$ can be described as a graph

 $\{(x_1, x_2) | x_2 = q_{\varepsilon}(x_1), x_1 \ge 0, x_2 \ge 0\}$

This manifold is invariant when

 $\frac{dx_2}{dt} = \frac{dx_2}{dx_1}\frac{dx_1}{dt} = \frac{dq_{\varepsilon}}{dx_1}\frac{dx_1}{dt}$

The following asymptotic expansion or power series expansion in ε is introduced:

$$x_{2} = q_{\varepsilon}(x_{1}) = q_{0}(x_{1}) + \varepsilon q_{1}(x_{1}) + \varepsilon^{2} q_{2}(x_{1}) + \dots ,$$

$$q_{0} = \frac{(1 - x_{1})(1 + b_{1}x_{1})}{a_{1}} , \quad q_{1} = q_{0} \frac{(x_{1}(a_{1} - b_{1}) - 1)}{x_{1}(2x_{1}b_{1} + 1 - b_{1})}$$

$$q_{2} = \cdots$$

In order to simulate the model we solve the uncoupled system

$$\frac{d\tilde{x}_1}{dt} = \tilde{x}_1 \left(1 - \tilde{x}_1 - \frac{a_1 q_{\varepsilon}(\tilde{x}_1)}{1 + b_1 \tilde{x}_1} \right) \quad \text{master}$$
$$\frac{d\tilde{x}_2}{dt} = \varepsilon q_{\varepsilon}(\tilde{x}_1) \left(\frac{a_1 \tilde{x}_1}{1 + b_1 \tilde{x}_1} - 1 \right) \quad \text{slave}$$

where the initial values are chosen as: $\tilde{x}_1 = x_1(0)$ and $\tilde{x}_2 = q_{\varepsilon}(x_1(0))$

RM₁-model: $a_1 = 5/3b_1$, $\varepsilon = 0.01$, A: $b_1 = 4.0402$, B: $b_1 = 4.0404$, C: 4.0405, D: 4.042

One-parameter diagram x_i vs b_1 , $\varepsilon = 0.01$

Hopf H bifurcation

 RM_1 -model asymptotic expansion approximation

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

RM₂ predator-prey model, constant efficiency

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

This model has been studied in:

Hek. Geometric singular perturbation theory in biological practice. *Journal of Mathematical Biology*, 60:347–386, 2010.

However, without motivation for the extra ε factor

Simulation results are shown which indicate unrealistic unbounded solutions when $\varepsilon \rightarrow 0$

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

MB nutrient-prey-predator model

$$\frac{dx_0}{dt} = (x_r - x_0)\varepsilon d - a_0 x_0 x_1$$
$$\frac{dx_1}{dt} = a_0 x_0 x_1 - \varepsilon dx_1 - \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1}$$
$$\frac{dx_2}{dt} = \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \varepsilon dx_2$$

parameter	Interpretation
t	Fast time variable
x_0	Nutrient density
x_i	Population biomass density
x_r	Nutrient concentration in reservoir
d	Dilution rate
a_0	Searching rate
a_1	Searching rate
b_1	Searching rate \times handling time

It is possible to decouple the system by introduction of the total biomass

$$H(t) = x_0(t) + x_1(t) + x_2(t) - x_r \quad t \ge 0$$
$$\frac{dH}{dt} = -\varepsilon dH$$

In order to be able to compare the three models RM_1 , RM_2 and MB we make the following assumptions: H(0) = 0 and this gives:

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - x_2 - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

Extra x_2 shows that prey has less nutrients available that are indirectly consumed by the predator

Transcritical TC, Hopf H bifurcations

$\label{eq:mb-model} \begin{array}{l} \mathsf{MB}\text{-model}\\ \mathsf{One}\text{-parameter diagram } x_i \text{ vs } b_1\text{: } a_1 = 5/3\,b_1\text{, } \varepsilon = 1 \end{array}$

Transcritical TC, Hopf H bifurcations

 $b_1 = 8$ and A: $\varepsilon = 1$, B: $\varepsilon = 0.1$, C: $\varepsilon = 0.01$

Hopf H_{MB} MB model; Hopf $H_{RM_{1,2}}$ RM_{1,2} model; Transcritical TC all models

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

Conclusions (1)

- (RM₁ \Rightarrow RM₂) Making the RM₁ model more realistic leads in RM₂ model to unrealistic unbounded solutions when $\varepsilon \rightarrow 0$
- (RM₂ \Rightarrow MB) Introduction of dynamics of nutrients in the model leads to realistic solution and less complex dynamics when $\varepsilon \rightarrow 0$

Conclusions (2)

- Integrated approach is important: Modelling, bifurcation analysis and perturbation theory
- Proper modelling gives perturbation parameter ε a biological interpretation not just a mathematical perturbation parameter
- In RM₁ model a canard occurs just above the Hopf bifurcation and not in the MB model