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Canard: Van der Pol equation (Eckhaus 1983)
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• In the classical Rosenzweig-MacArthur (RM) model in

absence of the predator the prey grows logistically and

nutrients are not modelled

– Fast-slow dynamics,

– Singular perturbation technique,

– Canards

• In mass balance (MB) chemostat model this nutrient

is explicitly modelled

– Bifurcation analysis
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Rosenzweig-MacArthur predator–prey model

RM1-model, variable efficiency

dx1
dt

= f(x1, x2, ε) = x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εg(x1, x2, ε) = εx2(
a1x1

1 + b1x1
− 1)

parameter Interpretation
t Time variable
x1 Prey density
x2 Predator biomass density
a1 Searching rate
b1 Searching rate × handling time
ε Efficiency and predator death rate



The hyperbolic relationship

F(x1, x2) =
a1x1

1 + b1x1

• Ecology: Holling type II functional response

• Biochemistry: Michaelis-Menten kinetics

Derivation using time-scale separation: searching and feed-
ing is much faster than population physiological processes,
such as growth

Here the parameters are:
a1 = b; searching rate
b1 = b/k; searching rate × handling time

The biological interpretation of ε is the yield in Microbiol-
ogy, or assimilation efficiency in Ecology and here besides
a time-scale parameter also predator death rate factor



Bifurcation analysis of RM1 predator–prey model

dx1
dt

= x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εx2(
a1x1

1 + b1x1
− 1)

Bifurcation Description

TC Transcritical bifurcation:
invasion through boundary equilibrium

T Tangent bifurcation:
collapse of the system

H Hopf bifurcation:
origin of (un)stable limit cycle

Literature (ε = 1):

Yu. A Kuznetsov, Elements of Applied Bifurcation Theory, Applied

Mathematical Sciences 112, Springer-Verlag, 2004



RM1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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Transient dynamics b1 = 3 and b1 = 8, ε =
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Transient dynamics b1 = 4 Hopf bifurcation point H: ε =

1
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fast system

ε → 0
dx1
dt

= f(x1, x2, ε)
dx1
dt

= f(x1, x2,0)

dx2
dt

= εg(x1, x2, ε)
dx2
dt

= 0

layer system

slow system τ = εt

ε → 0

ε
dx1
dτ

= f(x1, x2, ε) 0 = f(x1, x2,0)

dx2
dτ

= g(x1, x2, ε)
dx2
dτ

= g(x1, x2,0)

reduced system



Evolution of the slow variable on critical manifold

Introduce the function

x2 = q(x1) =
1

a1
(1− x1)(1 + b1x1)

Formally from

dx2
dτ

= g(x1, q(x1)) =
dq

dx1

dx1
dτ

we get

dx1
dτ

=
q(x1)(a1x1 − (1 + b1x1)

dq/dx1

It describes the slow dynamics on the critical manifold: the

parabola f(x1, x2,0) = 0.



Note that this expression is zero at the top of the parabola

point (x1, x2) where x1 = (b1 − 1)/(2b1)

This point is a fold point, the denominator is at that point

zero

For b1 = 4 (Hopf bifurcation) also the numerator is zero

since it is also an equilibrium

Then slow flow is possible in that fold point because the

zero’s cancel



Slow dynamics

A: b1 = 3, B and C: b1 = 8, ε = 0
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Slow dynamics

A: b1 = 4, (Hopf) B: b1 = 8, ε = 0
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Geometric singular perturbation techniques

(N. Fenichel 1997, G. Hek 2010)



Approximations techniques slow manifolds, x2 = qε(x1)

Using its invariance the perturbed manifold M1
ε can be

described as a graph

{(x1, x2)|x2 = qε(x1), x1 ≥ 0, x2 ≥ 0}
This manifold is invariant when

dx2
dt

=
dx2
dx1

dx1
dt

=
dqε

dx1

dx1
dt

The following asymptotic expansion or power series expan-

sion in ε is introduced:

x2 = qε(x1) =q0(x1) + εq1(x1) + ε2q2(x1) + . . . ,

q0 =
(1− x1)(1 + b1x1)

a1
, q1 = q0

(x1(a1 − b1)− 1)

x1(2x1b1 + 1− b1)
q2 = · · ·



In order to simulate the model we solve the uncoupled

system

dx̃1
dt

= x̃1
(
1− x̃1 − a1qε(x̃1)

1 + b1x̃1

)
master

dx̃2
dt

= εqε(x̃1)
( a1x̃1
1 + b1x̃1

− 1
)

slave

where the initial values are chosen as:

x̃1 = x1(0) and x̃2 = qε(x1(0))



a1 = 5/3 b1, where b1 = 3

asymptotic expansion approximation

x2 = qε(x1), ε = 0.1
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a1 = 5/3 b1, where b1 = 3, b1 = 8, b1 = 4
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RM1-model: a1 = 5/3b1, ε = 0.01,
A: b1 = 4.0402, B: b1 = 4.0404, C: 4.0405, D: 4.042
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One-parameter diagram xi vs b1, ε = 0.01
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RM1-model asymptotic expansion approximation

r(x1, ε = 0.01): a1 = 5/3b1,

b1 = 4.0403
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RM2 predator–prey model, constant efficiency

dx1
dt

= x1
(
1− x1 − ε

a1x2
1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

This model has been studied in:

Hek. Geometric singular perturbation theory in biological practice.

Journal of Mathematical Biology, 60:347–386, 2010.

However, without motivation for the extra ε factor

Simulation results are shown which indicate unrealistic un-

bounded solutions when ε → 0
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MB nutrient–prey-predator model

dx0
dt

= (xr − x0)εd− a0x0x1

dx1
dt

= a0x0x1 − εdx1 − ε
a1x1x2
1 + b1x1

dx2
dt

= ε
a1x1x2
1 + b1x1

− εdx2

parameter Interpretation
t Fast time variable
x0 Nutrient density
xi Population biomass density
xr Nutrient concentration in reservoir
d Dilution rate
a0 Searching rate
a1 Searching rate
b1 Searching rate × handling time



It is possible to decouple the system by introduction of the

total biomass

H(t) = x0(t) + x1(t) + x2(t)− xr t ≥ 0
dH

dt
= −εdH

In order to be able to compare the three models RM1, RM2

and MB we make the following assumptions: H(0) = 0 and

this gives:

dx1
dt

= x1

(
1− x1 − x2 − ε

a1x2
1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

Extra x2 shows that prey has less nutrients available that

are indirectly consumed by the predator



RM1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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MB-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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b1 = 3 and A:ε = 1, B: ε = 0.1, C: ε = 0.01
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b1 = 8 and A:ε = 1, B: ε = 0.1, C: ε = 0.01
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Two-parameter bifurcation diagram ε vs b1
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Conclusions (1)

• (RM1 ⇒ RM2) Making the RM1 model more realistic

leads in RM2 model to unrealistic unbounded solutions

when ε → 0

• (RM2 ⇒ MB) Introduction of dynamics of nutrients in

the model leads to realistic solution and less complex

dynamics when ε → 0



Conclusions (2)

• Integrated approach is important: Modelling, bifurca-

tion analysis and perturbation theory

• Proper modelling gives perturbation parameter ε a bi-

ological interpretation not just a mathematical pertur-

bation parameter

• In RM1 model a canard occurs just above the Hopf

bifurcation and not in the MB model


