Physics of metabolic organization

Marko Jusup

Center of Mathematics for Social Creativity
Hokkaido University

Thanks to: T Sousa, T Domingos, V Labinac, N Marn, Z Wang, T Klanjscek & many others

Funding: the Japan Science and Technology Agency (JST) Program to Disseminate Tenure Tracking System and the Research Grant Program of Inamori Foundation.
Introduction / Motivation

Timeline of major milestones:

2008 First encounter with DEB
Early 2009 First attempts to make a DEB model
Late 2009 Depression
Early 2010 Visited Bas at VU
Mid 2010 Parameters estimated
2011 First DEB paper published
DEB is an extremely simple theory for describing extremely complex phenomena.

Bas Kooijman
“REALLY!?!?!”

Marko Jusup
Several years later...

“Aaah! Now I get it.”
Limiting the amount of information. Out of approximately 90 naturally occurring elements, only 11 are ubiquitous in living organisms. Out of these 11 elements, the main four (C, H, O, and N) comprise about 99% of living biomass. A modeler, therefore, hardly needs to keep track of a large number of mass balances to capture the effects of many important metabolic processes.
Focusing on aggregate (macrochemical) effects. In metabolic networks (i.e., graph-theoretical representations of metabolism), nodes corresponding to metabolites have an approximately scale-free degree distribution. Exceptionally high-degree nodes (hub metabolites) do exist and their presence is essential to the proper functioning of metabolic networks.
Cell similarity. The metabolic similarity of cells is mostly independent of organism size. Once a successful metabolic pathway evolves, it can be preserved by evolution to serve very similar functions in various organs or even the same function in different species. A famous example is the cyclic AMP pathway used in cell communication by all animals investigated, including bacteria and other unicellular organisms.
Today's aims

(1) Revisit some of the fundamentals of DEB theory

(2) Discuss the potential future directions for development
Schematic representation of the basic metabolic processes in DEB organisms (heterotrophic aerobes). Typically, food is assimilated into reserve in the presence of oxygen during which carbon dioxide, water, and nitrogenous waste are excreted into the environment. Reserve is used to power (i) growth, and (ii) various dissipative metabolic processes, where the latter keep the organism alive and allow it to mature. The egestion of feces occurs in parallel with assimilation due to the inefficiencies of digestive tracts.
DEB theory: intuition

Why two compartments?

(1) There is a “buffer” between the changing environment and the relatively constant “internals”. Organisms can survive starvation.

(2) Even if compartments have constant chemistry*, the organism's overall chemistry can change by changing the relative state of these compartments.

*Strong homeostasis arises as a natural assumption.
Table 1: The three types of macrochemical reactions for a heterotrophic aerobe.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Chemical Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assimilation</td>
<td>(y_{XE}CH_{nHX}O_{nOX}N_{nNX} + c_{11}O_2 \rightarrow CH_{nHE}O_{noE}N_{nNE} + c_{12}CO_2 + c_{13}H_2O + c_{14}NH_3 + y_{PE}CH_{nHP}O_{noP}N_{nNP})</td>
</tr>
<tr>
<td>Growth</td>
<td>(CH_{nHE}O_{noE}N_{nNE} + c_{21}O_2 \rightarrow y_{VE}CH_{nHV}O_{noV}N_{nNV} + c_{22}CO_2 + c_{23}H_2O + c_{24}NH_3)</td>
</tr>
<tr>
<td>Dissipation</td>
<td>(CH_{nHE}O_{noE}N_{nNE} + c_{31}O_2 \rightarrow c_{32}CO_2 + c_{33}H_2O + c_{34}NH_3)</td>
</tr>
</tbody>
</table>

Symbols:
- \(n_{*X}, n_{*V}, n_{*E}, n_{*P} \): chemical indices for food, structure, reserve, and feces
- \(y_{XE}, y_{PE}, y_{VE} \): yields (food on reserve, feces on reserve, structure on reserve)
- \(c_{ij}, i \in \{1, 2, 3\}, j \in \{1, 2, 3, 4\} \): stoichiometric coefficients

What is the interpretation of the macrochemical reactions in Table 1? Taking assimilation as an example, we see that food gets transformed into reserve in the presence of oxygen, whereby building 1 C-mol of reserve requires ingesting \(y_{XE} \) C-moles of food and breathing in \(c_{11} \) moles of oxygen. In addition, \(y_{PE} \) C-moles of feces are produced because food cannot be processed fully in the digestive system. If we assume that reserve is assimilated at a rate \(J_{EA} \), these simple considerations imply a food ingestion rate of \(J_X = y_{XE}J_{EA} \), and a feces egression rate of \(J_P = y_{PE}J_{EA} \). In addition, food assimilation accounts for a (variable) fraction of the organism’s oxygen consumption by contributing amount \(c_{11}J_{EA} \) to the respiration rate (\(J_O \)).
Metabolism is surprisingly constrained: there are only three degrees of freedom. Making the strong homeostasis assumption, energy representation naturally emerges.

DEB theory: formalism

Table 2: Flows of organic and inorganic compounds.

<table>
<thead>
<tr>
<th>Flow of substance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{J}X = y{XE} \dot{J}_{EA}$</td>
<td>Ingestion</td>
</tr>
<tr>
<td>$\dot{J}V = y{VE} \dot{J}_{EG}$</td>
<td>Growth</td>
</tr>
<tr>
<td>$\dot{J}E = \dot{J}{EA} - \dot{J}{EG} - \dot{J}{ED}$</td>
<td>Net reserve assimilation</td>
</tr>
<tr>
<td>$\dot{J}P = y{PE} \dot{J}_{EA}$</td>
<td>Egestion</td>
</tr>
<tr>
<td>$\dot{J}O = c{11} \dot{J}{EA} + c{21} \dot{J}{EG} + c{31} \dot{J}_{ED}$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>$\dot{J}C = c{12} \dot{J}{EA} + c{22} \dot{J}{EG} + c{32} \dot{J}_{ED}$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>$\dot{J}H = c{13} \dot{J}{EA} + c{23} \dot{J}{EG} + c{33} \dot{J}_{ED}$</td>
<td>Water</td>
</tr>
<tr>
<td>$\dot{J}N = c{14} \dot{J}{EA} + c{24} \dot{J}{EG} + c{34} \dot{J}_{ED}$</td>
<td>Ammonia</td>
</tr>
</tbody>
</table>
DEB theory: formalism

define assimilation, growth, and dissipation energy flows by $\dot{p}_i \equiv \mu_{E} \dot{J}_{Ei}, \ i \in \{A, G, D\}$

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{dE_X}{dt} = \kappa_A \dot{p}_A$</td>
<td>Ingestion</td>
</tr>
<tr>
<td>$\frac{dE}{dt} = \dot{p}_A - \dot{p}_G - \dot{p}_D$</td>
<td>Reserve dynamics</td>
</tr>
<tr>
<td>$\frac{dE_V}{dt} = \kappa_G \dot{p}_G$</td>
<td>Growth</td>
</tr>
<tr>
<td>$\frac{dE_P}{dt} = \kappa_P \dot{p}_A$</td>
<td>Egestion</td>
</tr>
<tr>
<td>$\kappa_A \equiv \gamma_{XE} \frac{\mu_X}{\mu_E}$</td>
<td>Assimilation ratioa</td>
</tr>
<tr>
<td>$\kappa_G \equiv \gamma_{VE} \frac{\mu_V}{\mu_E}$</td>
<td>Growth efficiency</td>
</tr>
<tr>
<td>$\kappa_P \equiv \gamma_{PE} \frac{\mu_P}{\mu_E}$</td>
<td>Egestion efficiency</td>
</tr>
</tbody>
</table>

aIn DEB-based literature (e.g., [7, 60]), it is customary to define the assimilation efficiency as $\kappa_X \equiv 1/\kappa_A$. For all efficiencies, it holds $0 < \kappa_* < 1$, whereas $\kappa_A > 1$.

To go from theory to applications, it is necessary to express energy flows in terms of state variables.

Fig. 2. Schematic representation of energy flows in the standard DEB model. Commonly tracked state variables are denoted by rectangles. Nodes b and p indicate metabolic switches at birth (onset of feeding) and puberty (onset of reproduction). The utilization flow is split in accordance with the kappa rule. Overheads, quantitatively represented by assimilation and growth efficiencies, result from the chemical transformations of food into reserve and reserve into structure, respectively.
Reserve density dynamics is the key

\[
\frac{d[E]}{dt} = \frac{\dot{p}_A - \dot{p}_C}{L^3} - 3 \frac{[E]}{L} \frac{dL}{dt}
\]

Three approaches:
(1) Educational / practical (Jaap van der Meer): reserve density follows a first order dynamics
(2) Standard (Bas Kooijman): weak homeostasis
(3) Middle: contrast energy inputs and outputs

\[
\frac{d}{dt} (E + E_V) = \dot{p}_A - \dot{p}_D - (1 - \kappa_G) \dot{p}_G = \\
\dot{p}_A - \dot{p}_S - (1 - \kappa) \dot{p}_C - (1 - \kappa_G) \dot{p}_G
\]
Standard DEB model

\[
\frac{dE}{dt} = \dot{p}_A - \dot{p}_C, \quad \text{Reserve dynamics}
\]

\[
\frac{dL}{dt} = \frac{\dot{p}_G}{3L^2[E_G]}, \quad \text{and}
\]

\[
\frac{dE_H}{dt} = \begin{cases}
\dot{p}_R, & \text{if } E_H < E_H^p \\
0, & \text{if } E_H = E_H^p
\end{cases}, \quad \text{Maturation}
\]

\[
\dot{p}_A = \begin{cases}
0, & \text{if } E_H < E_H^b \\
\{\dot{p}_{Am}\} fL^2, & \text{otherwise}
\end{cases}, \quad \text{Assimilation}
\]

\[
\dot{p}_C = [E] \frac{\dot{\nu} [E_G] L^2 + [\dot{\rho}_M] L^3 + \{\dot{\rho}_T\} L^2}{[E_G] + \kappa [E]}, \quad \text{Utilization}
\]

\[
\dot{p}_G = [E_G] \frac{\kappa \dot{\nu} [E] L^2 - [\dot{\rho}_M] L^3 - \{\dot{\rho}_T\} L^2}{[E_G] + \kappa [E]}, \quad \text{and} \quad \text{Growth}
\]

\[
\dot{p}_R = (1 - \kappa) \dot{p}_C - k_J E_H, \quad \text{Maturation}
\]
State of affairs:

Consistent and applicable theory.

Best ever! It's fantastic! Everybody agrees.

But does it work?
DEB theory: applications

Fit model to data

Simulate growth again

Estimate feeding history

Compare predictions & measurements
Wild Pacific bluefin tuna reproduce at age 5 or 6

In captivity, reproduction is possible even at age 3

However, in the studied case it took 7 years

Predicted onset of reproduction after 2555 days
Applications
Applications
Where tuna DEB model struggles:

- FCR in juveniles and adults seems to be similar
- Spawning moderately changes condition of adults
- Juveniles can considerably change lipid content
DEB theory: future

What if?

Martin et al., J Anim Ecol (2017)
Model by Martin et al. discards:

- Reserve
- Maturity

Perhaps a bit too much.
DEB theory: future

- Food b to feces
- Assimilation
- Assimilation overhead
- Somatic maintenance
- Growth overhead
- Growth
- Structure
- Reserve
- Fast reserve
- Utilization
- Slow reserve
- Maturation
- Reproduction
- Gonads
Thank you for your attention!
ご清聴ありがとうございました。