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Human activities have been modifying ecosystems for centuries, from pressures on wild populations we harvest 
to modifying habitats through urbanization and agricultural activities. Changes in global climate patterns are adding 
another layer of, often unpredictable, perturbations to ecosystems on which we rely for life support [1,2]. To ensure 
the sustainability of ecosystem services, especially at this point in time when the human population is estimated to 
grow by another 2 billion by 2050 [3], we need to predict possible consequences of our actions and suggest relevant 
solutions [4,5]. We face several challenges when estimating adverse impacts of our actions on ecosystems. We describe 
these in the context of ecological risk assessment of chemicals. Firstly, when attempting to assess risk from exposure 
to chemicals, we base our decisions on a very limited number of species that are easily cultured and kept in the 
lab. We assume that preventing risk to these species will also protect all of the untested species present in natural 
ecosystems [6]. Secondly, although we know that chemicals interact with other stressors in the field, the number of 
stressors that we can test is limited due to logistical and ethical reasons. Similarly, empirical approaches are limited 
in both spatial and temporal scale due to logistical, financial and ethical reasons [7,8]. To bypass these challenges, we 
can develop ecological models that integrate relevant life history and other information and make testable predictions 
across relevant spatial and temporal scales [8–10].

To ensure better predictive capacity, the models we develop need to be based on consistent and coherent princi-
ples representing core biological and ecological processes. The Dynamic Energy Budget (DEB) Theory describes the 
specifics of metabolic organization and life history of all life forms, and is based on thermodynamic principles [11,12]. 
Applying a standardized theory such as DEB, which has been tested in many systems and contexts [11], minimizes 
the risk of erroneous assumptions about model structure. This is especially relevant when we aim to explicitly model 
species physiology because there is more than one way to represent processes of resource acquisition and allocation 
to meet metabolic requirements [13]. Researchers may choose different ways to represent organismal physiology, 
often depending on their preference and background, and indeed some established approaches may seem to be more 
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straightforward (i.e. no abstract state variables such as reserve) and contain fewer parameters [13]. However, basing 
species physiology and life history on first principles creates a model which we can apply to conditions that are differ-
ent from those for which the model was originally designed. Ultimately, we need to apply our models to conditions for 
which we lack empirical data for model testing. For instance, as ecological systems are exposed to a potentially large 
number of stressors in different combinations, appropriate and tailored management efforts are required to ensure 
sustainability of ecosystem processes and services. Some chemical groups, e.g. pesticides, are well researched and 
we have a good understanding of how they affect suborganismal processes and organismal responses. We understand 
much less about how these chemicals impact populations and ecosystem services [9,14]. In addition, we know to a 
certain extent how global warming may impact ecological systems [15]. What we do not know is how the combination 
of chemical stressors and global warming may impact different levels of biological organization. However, we need to 
make predictions based on best available knowledge and principles [16]. Such predictions are likely to be more robust 
if they are based on first principles which have been tested in different systems and under novel conditions [17,18].

Furthermore, DEB theory provides a logical and mechanistic link between molecular and ecosystem processes 
[14] through common state variables, such as mass and energy, which reflect important features of each level of 
biological organization. More importantly, relevant feedbacks between levels of organization are explicitly included. 
Both intra- and inter-specific interactions, for instance, constrain organismal properties, either through predation or 
competition for a common resource. Changes in organismal properties then further change properties of populations, 
communities and ecosystem processes. These changes and dynamics emerge from several core principles of metabolic 
organization [17]. For example, feeding inhibition may yield organismal responses that go from almost no impact to 
substantial impacts on body sizes. This may result in initially no visible impacts on population properties – due 
to feedbacks and compensation processes – to a sudden extinction of populations [16]. Allowing for these important 
feedbacks to emerge mainly from first principles is at the core of next-generation models that promise better predictive 
capacity [17].

Finally, we address the question and challenge of basing our estimations of adverse impacts of chemicals and other 
stressors on several species we can culture in labs, while we are mainly concerned with avoiding risks to species in 
the field. Many such species are protected, which makes it nearly impossible to directly test impacts of chemicals [7]. 
Ecological models can extrapolate both stressor impacts and life histories across species. They do, however, need 
parameterization and validation data, and for many species we severely lack even basic life history and ecological 
information. The US regulation for pesticide registration, for instance, requires that assessments of potential risks 
be conducted for ∼ 1600 endangered and threatened species [4,7]. Approaches for extrapolating effects of chemicals 
across species using taxonomically related species [19] and interspecies correlation models [20], are continually being 
developed, but also questioned [21]. Extrapolating life history and ecological information across species brings us to 
allometry, briefly discussed in Jusup et al. [11], as a method that is often used to assign life-history parameter values 
based on maximum species sizes [22]. However useful such empirical approaches may be for model parameterization 
when we lack specific life-history data, the lack of explicit mechanisms could limit model application (to novel 
conditions, for example) and confine the model’s predictive capacity in relevant scenarios.

DEB theory holds the promise to do a better job at interspecies extrapolation because of structural similarity of 
metabolic organization across organisms [11,23]. Differences between species lie in parameter values, some of which 
are extensive (i.e. depend on maximum body size), and some are intensive (i.e. independent of body size and species 
specific) [11]. Future studies should increasingly focus on synthesizing DEB parameters and creating relationships 
which could be used to address parameter scarcity for species of interest [24–26].

We do, however, have to keep in mind that the DEB theory focuses exclusively on details of metabolic organization 
and physiology and largely ignores other important aspects of species biology and ecology. Adaptive behaviors such 
as reproductive strategies, dispersal or habitat selection are beyond the scope of DEB theory, but are required for 
representing ecology of individuals, populations, communities and ecosystems [27,28]. We therefore see DEB theory 
as a starting point, but not the ultimate solution, for developing models that predict the response of ecological systems 
from the response of its individuals and their interactions [7–9,29].

Ecological systems, on which we rely to provide services for our needs, are expected to receive more pressure 
as the human population continues to grow. We thus need to develop more predictive and robust tools and relevant 
approaches that can reliably assess the magnitude of our activities and inform the selection of appropriate management 
efforts that ensure ecosystem service provision [9,14,16]. DEB theory can play a central role in such approaches.
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