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Chapter 0

Basic methods

These exercises concern the background document Basic methods for Theoretical Biology,
which is assumed to be known to participants of the DEB tele-course.

0.1 Dimensions

Motivation:

If a model suffers from dimensional problems, it will be rarely useful. It, therefore, makes
sense to start with a dimensional analysis of any new model, before anything else. If a
model survives this check, it may still fail other consistency checks, however.

Given:

Suppose that we have a model

y(t) = a(t/b+ b)

for a variable y as a function of time t with parameters a and b.

0.1.1 Question:

Does the model suffer from dimension problems?

Hint:

Try to identify the dimensions of the parameters, starting with that of b.

Answer:

Formally: no problems if dim(b) =
√

time and dim(a) = dim(y)/
√

time. It is unlikely,
however, that the model has a (simple) physical interpretation with such dimensions.
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0.1.2 Question:

a What about the model y(t) = a(t/b+ bc), where t represents time again?

b How many identifiable parameters has this model?

Hint:

Is it possible to choose dim(c) such that dim(b) becomes simple? Is it possible to multiply
a with a number and multiply or divide b and c with that number without any consequence
for y?

Answer:

This model can have a simple physical interpretation if dim(c) = time and b is dimension-
less, while dim(a) = dim(y)time−1. More generally: dim(c) = time dim(d)2, which implies
dim(b) = time dim(d)−1, where d has simple but otherwise arbitrary physical dimensions.
The fitting of this model to data {ti, yi}ni=1 yields two parameters only, not three.

If you multiply a and b with a number and divide c by that number, y does not change.

0.2 Scaling of dynamic systems

Motivation:

One reason to scale a dynamic system is to remove parameters that cannot be estimated
from data. Scaling can usually be done in different ways.

Given:

The Monod model for the growth of a microbial population with density X on a substrate
in concentration S in a batch reactor is given by

d

dt
S = −jSfX

d

dt
X = ṙX

where t stands for time, f for the scaled functional response f = S
S+K

, jS is the biomass-
specific uptake rate, and ṙ is the specific growth rate: ṙ = yXS jS f .

0.2.1 Question:

What are the dimensions of all symbols, using only the given information?
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Hint:

Start with f and use the rule that you can only add quantities with the same dimension,
and consider dim(S) and dim(X) as given.

Answer:

dimK = dim(S) because f = S
S+K

f is dimensionless because f = S
S+K

dim(jS) = dim(S)/(time dim(X))
dim(yXS) = dim(X)/ dim(S)
dim(ṙ) = time−1

A possible choice for the dimension of S and X is: C-mol . length−3. This does not
imply, however, that yXS is necessarily dimensionless; we have dim(yXS) = C-mol X

C-mol S and

dim(jS) = C-mol S
time .C-mol X .

0.2.2 Question:

What are the parameters of the model?

Hint:

Does a differential equation fully specify the time-trajectories of the variables?

Answer:

Five parameters: initial substrate concentration S(0), initial population density X(0),
saturation coefficient K, max specific uptake rate jS, yield coefficient yXS.

0.2.3 Question:

a Can you scale the dynamic system {S,X} to dimensionless quantities?

b How many parameters will a system with three variables and five parameters have
after rescaling to dimensionless variables?

Hint:

Compare the dimensions of the parameters and the variables, and try to multiply of divide
variables with parameters such that the dimensions disappear. How many variables has
the system? What about time itself?
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Answer:

The scaled system will have 5 − 3 = 2 parameters, because we can (usually) remove one
parameter per variable.

One choice for rescaling is: s = S/K, x = X/(K yXS), τ = t jS yXS. The system then
becomes

d

dτ
s = −fx

d

dτ
x = fx

with f = s
1+s

and two parameters: s(0) = S(0)/K, x(0) = X(0)/(K yXS).

0.2.4 Question:

Suppose that we have a scatter-free data set {ti, S(ti)}ni=1. Can you rescale the dynamic
system {S,X} such that it only has (theoretically) identifiable parameters?

Hint:

Remove all biomass-related dimensions from variables and parameters.

Answer:

Since we have no information about X(t), we choose x = X/(K yXS).

d

dt
S = −ṙmKfx

d

dt
x = xfṙm

with four parameters: S(0), x(0), K, ṙm = jS yXS. The latter parameter has the interpre-
tation of the maximum specific growth rate.

0.2.5 Question:

Suppose that we know the initial biomass density X(0), but not how it changes in time
due to growth on the substrate. Can find we an estimate for the yield coefficient yXS, so
the efficiency with which substrate is converted into biomass?

Hint:

Have a close look at x(0).
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Answer:

Theoretically: yes, because we can estimate x(0) and K, so yXS = X(0)/(K x(0)). This is
remarkable, because we have no direct measurements about the conversion from substrate
to biomass. Practically, however, we will see that in presence of a little scatter, the uncer-
tainty in the values for x(0) and K is large, which makes the uncertainty in the value of
yXS huge. More elaborate models for biomass growth not necessarily allow to extract the
conversion efficiency from these data.

0.3 Theoretical identification of parameter values

Motivation:

Mechanistic models usually have parameters and variables that cannot be observed di-
rectly. Whether or not parameter-values can be identified, depends on the combination
of the model and the available (type of) data. Theoretical and practical identification of
parameter-values are different concepts; the next chapter will deal with practical parameter
identification problems.

Given:

In the DEB book Chap 2, Eq (2.23), {49}, we will see that the (volumetric) structural
length of an isomorph at constant food density X develops during the juvenile and adult
stage as

L(t) = fLm − (fLm − Lb) exp{−tṙB}

where the von Bertalanffy growth rate ṙB is given by ṙB = (3/k̇M + 3fLm/v̇)−1, and the
maximum length Lm by Lm = v̇

gk̇M
, and scaled functional response f is given by f = X

X+K
,

where X is the food density and K the saturation coefficient. Time t and food density X are
variables (although X is kept constant), and saturation coefficient K, energy conductance
v̇, maintenance rate coefficient k̇M , investment ratio g, (volumetric) length at birth Lb are
parameters.

0.3.1 Question:

What are the dimensions of all symbols, using only what has been given here?

Hint:

Use the rule that you can only add quantities that have the same dimension, and consider
dim(X) as given.
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Answer:

dim(K) = dim(X), because f = X
X+K

.

f must be dimensionless, because f = X
X+K

.
dim(Lb) = dim(L) = length, because L(0) = Lb.
dim(Lm) = dim(L) = length, because L(∞) = fLm, and f is dimensionless.
dim(ṙB) = time−1, because tṙB must be dimensionless; it occurs as an argument of a
transcendental function.
dim(k̇M) = dim(ṙB) = time−1, because ṙB = (3/k̇M + 3fLm/v̇)−1.
dim(v̇) = length/time, because dim((fLm/v̇)−1) = dim(ṙB) = time−1.
g must be dimensionless because dim( v̇

gk̇M
) = dim(Lm) = length; dim(v̇) and dim(k̇M) are

known.

0.3.2 Question:

Suppose that we have a set of scatter-free length-at-time observations {ti, L(ti)}ni=1, for a
single food level (so a single but unkown value for f). Which parameters are theoretically
identifiable?

Hint:

How many quantities fully determine the relationship between V and t?

Answer:

Three (compound) parameters only: Lb, fLm and ṙB.

0.3.3 Question:

Suppose that we have two sets of observations {ti, V (ti)}ni=1, for two (sufficiently different)
known food levels X1 and X2. Which parameters are now theoretically identifiable?

Hint:

What do we know more now? How many parameters does the ultimate length have as
function of food density?

Answer:

Five parameters are identifiable: Lb, K, k̇M , g and v̇. Functions of these parameters,
such as f , ṙB and Lm are identifiable as well, obviously. The relationship between L and t
gives information about Lb, L(∞) and ṙB (see previous question); the relationship of L(∞)
with X gives information about K and Lm; the relationship between ṙB with L(∞) gives
information about k̇M and v̇; the relationship between Vm and {v̇, k̇M , g} gives information
about g. There might well be practical problems with obtaining these parameter values
from the two data sets.
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0.3.4 Question:

Suppose that we have two sets of scatter-free observations on weights, rather than on
structural volumes, {ti,W (ti)}ni=1, for two (sufficiently different) known food levels X1 and
X2. Given is that weights relate to the structural volumes as (cf (2.6) at {31} for ER = 0
and E = fEm and dE = [Em]wE/µE)

W = (dV + fdE)V

where dV and dE are (unknown) parameters.

a What are the dimensions of dV and dE and which parameters are now theoretically
identifiable?

b Can you give a direct and simple argument why the parameters v̇ is not identifiable?

Note: both structure and reserve contribute to weight, and we have no a-priori rule to
quantify their contributions; only weights can be measured in a straightforward way. So
data on weights have less information than data on structural volume.

Hint:

How many parameters has ultimate weight as a function of food denity? Does that exceed
the number of observations?

Answer:

dim(dV ) = dim(dE) = weight . length−3. Six parameters: dV +f1dE
dV +f2dE

, K, (dV + f1dE)Vb,

Vb/(f
3
1Vm), k̇−1M +f1V

1/3
m /v̇, k̇−1M +f2V

1/3
m /v̇. In conclusion we can state that these compound

parameters are not very informative.
The parameter v̇ is not identifiable, because it has dimension length/ time, but no

lengths are measured.

0.3.5 Question:

Suppose that we have now data sets of weights-at-time for three, rather than two (suffi-
ciently different) known food levels. Which parameters are then identifiable?

Hint:

How many parameters has ultimate weight as a function of food denity?

Answer:

Six parameters are identifiable: dV Vb, dE/dV , K, k̇M , g and d
1/3
V v̇, or functions of these

(compound) parameters. Knowledge about the values of X can be used in this case to
obtain K and f ; this is because the relationship between Wb = (dV + fdE)Vb and X has
three parameters, K, dV Vb and dEVb, and we have three observations.
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0.4 Fitting data

Motivation:

DEBtool is meant to facilitate the application of DEB theory. Parameter estimation and
checking goodness of fit is among the tasks. This excersize show how to do this in a
relatively simple way. This simple task can be done by many packages, but we will meet
more complex tasks, where most packages are useless. We use Octave in the exercises; read
the manual of DEBtool to see the differences with Matlab.

Given:

We measured the lengths 1, 4, 5 and 5.5 cm at days 0, 1, 2 and 3.

0.4.1 Question:

a What is the von Bertalanffy growth rate and its standard deviation?

b Do the data fit this curve well?

Hint:

Check the code for figure 2.11, i.e. Bert examples.m in DEBtool/fig 3/ch2, and replace
a data set by this one.

Answer:

After setting the path to debtool/lib, the required code of a script file with the name
exer.m should read something like this:

aL = [0 1; 1 4; 2 5; 3 5.5]; % age-length data

function L = bert(p,aL) % define the von Bert curve

L = p(2) - (p(2) - p(1)) * exp(-p(3) * aL(:,1));

end

p = nrregr(’bert’, [1 6 1]’, aL); % estimate parameters

[cov, cor, sd] = pregr(’bert’, p, aL); % get standard deviation

[p, sd] % show result

shregr options(’default’) % initiate plot settings

shregr(’bert’, p, aL) % make a plot

This should work when you save this script file and run exer in the directory where you
parked exer.m. You can check the correct location by typing ls, which should list exer.m.
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0.5 Inner and outer products

Motivation:

Octave and Matlab are matrix-oriented languages. Their strength only reveals when you
make use of this.

Given:

Two column-vectors of numbers of equal length: x = [1 2]’; y = [3 4]’;.

0.5.1 Question:

What is the inner and outer product of these two vectors? Use Octave or Matlab.

Answer:

Inner product: x’*y. Outer product: x*y’.

0.5.2 Question:

Calculate the sum of the products of the elements of the two vectors.

Answer:

sum(x.*y). Notice that this equals x’*y.

0.6 Mean and variance

Motivation:

Mean and variances, covariances and correlations are basic concepts. Coding them in
Matlab/Octave helps to familiarize yourself with this language. This exercise is also about
maxtrix manipulation.

Given:

The list of paired data {x, y}3i=1: (1, 1.5), (2, 1.5), (3, 2).

0.6.1 Question:

What is the mean and estimated variance of x and y, their covariance, and their correlation
coefficient? Write a function that calculates the vector of means, the variance-covariance
matrix, and the correlation matrix for any (n,2)-matrix with n pairs of data.
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Hint:

Look into some DEBtool/lib/regr/ functions to see examples of code and consult the man-
ual. Notice that, when the list {xi}ni=1 represents n random trials from some probability
distribution of a random variable x, the expected value for x is estimated by the mean∑n
i=1 xi/n. A similar result applies for products of two variables. When the list {xi, yi}ni=1

represents n random trials from some probability distribution of a pair of random vari-
ables (x, y), the expected value for the product xy is estimated by the mean

∑n
i=1 xiyi/n.

Manipulate matrices the solve the problem.

Answer:

Your function can look like this:

function [m, cov, cor] = mcc (x)
[n, k] = size(x);
m = sum(x,1)’/ n;
cov = x’ * x/ n - m * m’;
sd = diag(cov).̂ 0.5
cor = cov./ (sd * sd’);
endfunction

Fill variable x like: x = [1 1.5; 2 1.5; 3 2]
Run your function mcc like: [m, cov, cor] = mcc x
We get

m =

(
2.00
1.66

)
cov =

(
0.666 0.166
0.166 0.055

)
cor =

(
1.000 0.866
0.866 1.000

)
Notice that this function also works for more than 2 variables.

0.7 Profile likelihood

Motivation:

Profile likelihood function provide valuable information about the accuracy of an parameter
estimation.

Given:

The list {3, 2, 4, 3} represents random trials from a Poisson distribution.

0.7.1 Question:

What is the 95% confidence interval of the parameter of the Poisson distribution? Com-
pare the likelihood-based estimate with that based on a parabolic approximation of the
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likelihood function near the maximum. Make plots of the profile likelihood function, and
the one based on the parabolic approximation.

Hint:

The second-order Taylor approximation to the ln likelihood function in the point λ̂ is `(λ) '
`(λ̂)+(λ− λ̂) d

dλ
`(λ̂)−0.5(λ− λ̂)2 d2

dλ2
`(λ̂). The middle term of the taylor expansion of the ln

likelihood function is zero by definition; this function represents a parabola in λ. DEBtool’s
routine survi chi calculates the inverse survivor function of the chi-square distribution.
So survi chi(1, 0.05) gives the value for which a chi-squared distributed variable with
parameter 1 (known as the degree of freedom) exceeds that value with probablility 0.05.

Answer:

The ln likelihood function for data {xi}ni=1 is `(λ) = lnλ
∑n
i=1 xi − nλ −

∑n
i=1 lnxi!. The

ML-estimate is λ̂ =
∑
i xi/n. The profile ln likelihood function is

`p(λ) = 2(`(λ̂)− `(λ)) = 2n(λ− λ̂)− 2 ln(λ/λ̂)
n∑
i=1

xi = 2nλ− 2nλ̂(1 + ln(λ/λ̂))

We have to subtract the first term in the second-order Tayler expansion and multiply by 2
to arrive at a function that is comparable with the profile ln likelihood function and obtain

`t(λ) = (λ− λ̂)2
d2

dλ2
`(λ̂) = (λ− λ̂)2λ̂−2

∑
i

xi = n(λ− λ̂)2/λ̂

The 95% confidence interval is given by

{λ|`p(λ) < 3.8415} or {λ|`t(λ) < 3.8415}

Large sample theory has been applied here, so the results only holds for large n. Practice
learns, however, that the first confidence interval is close to correct for much smaller values
of n than the second interval. The practical problem is that the calculation of the profile
likelihood function is generally computationally intensive.

The code can look like this: we create an empty script-file with the name prof.m and
write in that file for Octave:

x = [3, 2, 4, 3]; % data

n = length(x); % number of data-points

lm = mean(x); % ML estimate for Poisson-parameter

l = linspace(0,3 * lm, 100); % vector of parameter values

f1 = 2 * n * l - 2 * n * lm * (1 + log(l/ lm)); % prof-lik function

f2 = n * (l - lm) .̂ 2/ lm; % tangent parabola

plot(l, f1, ’g’, l, f2, ’r’, ... % plot functions in green and red

[0; 3 * lm], [3.84; 3.84], ’6’); % draw line for conf. intervals in black

We now run the script-file by typing prof in the Octave comment-line.
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0.8 Root finding

Motivation:

Many practical problems involve the finding of roots using numerical methods. Likelihood
function can have more than one local extremes. We need the global maximum only. Roots
finding methods for the derivatives of the likelihood function can be used to identify the
values for which the likelihood function has extremes. We still have to make sure that
the root corresponds to the global maximum, rather than to a local extreme (minimum or
maximum).

Given:

Two sets of paired data x = [1 2; 2 2.2; 3 2.3] and y = [2 5; 3 6; 4 6.1]; The first
columns represent independent variables, the second column dependent variables, which
are normally distributed with a mean that is proportional to the dependent variable and
a constant variance. The variances of the two data sets don’t need to be equal, the
proportionality factor in their means are equal.

0.8.1 Question:

What is the ML estimate for the proportionality factor?

Hint:

This estimate is given in implicit form in the statistical document in the section ”More
sample case”; write a function to get a numerical estimate, using fsolve.

Answer:

We first specify the function for which we want to find the root. Your function looks like

function f = finda (a)

global x y;

[nx k] = size(x); [ny k] = size(y);

varx = sum((x(:,2) - a * x(:,1)).̂2)/ nx;

vary = sum((y(:,2) - a * y(:,1)).̂2)/ ny;

v = x(:,1)’ * x(:,2)/varx + y(:,1)’ * y(:,2)/ vary;

w = x(:,1)’ * x(:,1)/varx + y(:,1)’ * y(:,1)/ vary;

f = a - v/w;

end

Now we find the root and use your function like:
x = [1 2; 2 2.2; 3 2.3]; y = [2 5; 3 6; 4 6.1]; global x y;
[a, error] = fsolve(’finda’, 0.1)
[a, error] = fsolve(’finda’, 2)
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Check the value of error to make sure that the numerical procedure converged. It can
easily result in nonsense. Notice that the two calls have different results; the one with the
highest value for the likelihood function is the proper estimate. Consult Matlabs’ manual
for fsolve.
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Chapter 1

Basic concepts

1.1 Physical versus volumetric length

Motivation:

Lengths are important in DEB theory because of the role of surface areas in assimilation and
mobilisation (of reserve), in combination with that of volume in maintenances. Moreover,
auxiliary theory uses physical length to access the amount of structural length.

Given:

The standard DEB model applies.

1.1.1 Question:

a What is the difference between physical and volumetric length?

b What is the difference between volumetric and structural length?

c What is the implication of isomorphy for the relationship between physical and vol-
umetric length?

d Which assumption does auxiliary theory make about their relationships?

Hint:

What is the role of shape in length?

Answer:

Physical length depends on shape and requires a definition of how the length is taken;
volumetric length is independent of shape and represents the cubic root of the physical
volume. Both reserve and structure contribute to physical volume; structural length is

17
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the cubic root of structural volume. Isomorphy implies that physical length is propor-
tional to volumetric length. Auxiliary theory assumes that a well-chosen physical length
is proportional to structural length.

1.2 Temperature correction

Motivation:

All physiological rates depend on temperature, which should be taken into account when
rates are compared at different temperatures.

Given:

A typical Arrhenius temperature for ectotherms is 8 kK, see Table 8.1.

1.2.1 Question:

Suppose that we measure a shell growth rate of 0.2 cm d−1 at 20◦C in a mussel and the
Arrhenius relationship applies, what would this rate be at 41◦C?

Hint:

Have a look at Eq (1.2).

Answer:

We should expect a rate of 0.2 exp(8000/(273 + 20)− 8000/(263 + 37)) cm d−1.

1.2.2 Question:

How does this rate relate to a body growth rate of, say, 2 mm d−1 of a sparrow with a body
temperature of 41◦C? Discuss the comparison.

Hint:

Do they have the same shape? Are sparrows ectothermic?

Answer:

No, mussels and sparrows don’t have the same shape, so a direct comparison of these
rates makes no sense. We can remove the effect of shape by turning to volumetric lengths,
but we still have the problem that mussels would rapidly die at 40◦C, and a sparrow at
20◦C. We can infer a theoretical Arrhenius temperature for the sparrow if we know some
characteristic rate (such as the energy conductance) for the mussel at 20◦ and the sparrow
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at 41◦C, and assume that they are the same for both species. This Arrhenius temperature
can then be used to make the comparison, given that our assumption holds.
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Chapter 2

Standard DEB Model

2.1 Hyperbola

Motivation:

The DEB’s functional response is frequently called a hyperbola, but its standard represen-
tation seems to be quite different at first sight. This exercise aims to clarify the link.

Given:

A hyperbola is the set of all points (x, y) the difference of whose distances from distinct
fixed points (foci) is constant. In formula

(x− h)2

a2
− (y − k)2

b2
= 1

The intersections of the line through the foci with the hyperbola are called vertices ; the line
segment connecting the vertices is called the transverse axis ; the midpoint of the transverse
axis is called the center. The center is at (h, k), the vertices are a units from the center,
the foci c units, with b2 = c2 − a2.

2.1.1 Question:

Show that the function f(X) = (1 +K/X)−1 for X > 0 is (part of) a hyperbola.

Hint:

Set center at origin; make hyperbola rectangular; rotate 45 degrees; translate.

Answer:

Let h = k = 0, and b = a, so x2 − y2 = a2. Introduce v = x + y and w = x − y, so
x = (v + w)/2 and y = (v − w)/2. Substitution gives vw = a2. Translate v = X + K,

21



22 CHAPTER 2. STANDARD DEB MODEL

v = 1− Y and set a2 = K, which results in (1− Y )(X + K) = K, or X = Y (X + K), or
Y = (1 +K/X)−1.

2.2 Homogeneous functions

Motivation:

Reserve dynamics belongs to the core of the DEB theory, but its derivation is not the
most easy part of the DEB book; the comments on the DEB book gives a more simple
derivation. This exercise aims to clarify the background of homogeneous functions, which
occur in the derivation of reserve dynamics; we start with total and partial derivatives,
which we need to understand Euler’s theorem, see Basic Methods for Theoretical Biology.

Given:

If z = f(x, y) and x = g(t) and y = h(t), and the functions f , g and h are all differentiable,
then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

The quantity dz = ∂z
∂x

∆x+ ∂z
∂y

∆y is known as the total differential of z.

2.2.1 Question:

Evaluate the total derivative of z for z(t) = ax(t)y(t), x(t) = bt and y = exp{−ct}.

Answer:

∂z
∂x

= ay(t) and ∂z
∂y

= ax(t); dx
dt

= b and dy
dt

= −c exp{−ct}, so dz
dt

= ab exp{−ct}(1− ct).

Given:

A function is homogeneous of degree n if

f(tx, ty) = tnf(x, y)

for all t > 0 and all (x, y) 6= (0, 0).

2.2.2 Question:

Find the degree of the given function

1 : f(x, y) = x3 − 3xy2 + y3

2 : f(x, y) =
xy√
x2 + y2

3 : f(x, y) = exp{x/y}

http://www.bio.vu.nl/thb/research/bib/Kooy2010_c.pdf
http://www.bio.vu.nl/thb/course/tb/th.pdf
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4 : f(x, y) = 2x3 − 3xy2

5 : f(x, y) = x2y − 4x3 + 3xy2

6 : f(x, y) = x exp{x/y}+ y sin{y/x}
7 : f(x, y) = 1 + x+ y

8 : f(x, y) =
x− y
x+ y

Answer:

1 degree 3

2 degree 1

3 degree 0

4 degree 3

5 degree 3:

6 degree 1:

7 non-homogeneous

8 degree 0:

2.2.3 Question:

Show that if f(x, y) is homogeneous of degree n, then

x
∂

∂x
f(x, y) + y

∂

∂y
f(x, y) = nf(x, y)

a result known as Euler’s theorem for homogeneous functions. The converse also holds
true.

Hint:

Let g(t) = f(tx, ty) = tnf(x, y) and introduce x = tX and y = tY ; evaluate d
dt
g and set

t = 1.

Answer:

Let g(t) = f(tx, ty) = tnf(x, y) and introduce x = tX and y = tY . Use the chain rule for
differentiation to prove that

d

dt
g(t) = ntn−1f(X, Y ) = X

∂

∂x
f(tX, tY ) + Y

∂

∂y
f(tX, tY )

then let t = 1.
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2.3 Reserve dynamics

Motivation:

DEB theory assumes that food-derived metabolites are first converted to reserve(s), and
reserve is mobilised for other metabolic purposes. The mobilisation of reserve, therefore,
drives metabolism and its dynamics is key to DEB theory.

Given:

The change in mass of reserve is the difference between the assimilation and mobilisation
fluxes of reserve: d

dt
ME = J̇EA − J̇EC . For an individual with structural mass MV and

structural length L, the mobilisation flux is J̇EC = ME( v̇
L
− ṙ), where ṙ = M−1

V
d
dt
MV

represents the (varying) specific growth rate and v̇ the (constant) energy conductance.

2.3.1 Question:

a Express the specific growth rate in terms of change in structural volume and of change
in structural length.

b Give the expression for the change in reserve density, i.e. the ratio of the amounts of
reserve and structure mE = ME/MV .

c Under what condition is the reserve density constant?

d Assuming that the assimilation flux has a maximum J̇EAm, what is the maximum
reserve density?

e What are the assumptions behind this reserve dynamics?

f What is the difference with first order kinetics?

g What is the mean residence time of a molecule in reserve?

Hint:

You are only asked to express the specific growth rate in terms of change in structural vol-
ume and length, not in terms of amounts of reserve and structure. What relationships exist
between mass, volume and length? What assumptions are used for these relationships?
Remember the chain-rule for differentiation: d

dx
g(x)f(x) = f(x) d

dx
g(x)+g(x) d

dx
f(x). What

does the concept of weak homeostasis mean? A transformation follows first kinetics if each
substrate molecule partakes to the transformation with a constant probability rate.
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Answer:

Structural massMV relates to structural volume V asMV = [MV ]V , where [MV ] is constant
due to the assumption of strong homeostasis. So ṙ = M−1

V
d
dt
MV = V −1 d

dt
V . Structural

(volumetric) length L relates to structural volume V as V = L3 by definition. Since
d
dt
V = d

dt
L3 = 3L2 d

dt
L, we have ṙ = 3L−1 d

dt
L. The change in reserve density is

d

dt
mE = M−1

V

d

dt
ME − ṙmE

= jEA −M−1
V ME(

v̇

L
− ṙ)− ṙmE for jEA = J̇EA/MV

= jEA −mE
v̇

L

No change in reserve density occurs if mE = jEAL/v̇. It remains constant during growth
(of juveniles and adults) if jEA ∝ L and the proportionality factor is constant. This
holds if J̇EA ∝ L2 and food density remains constant. DEB theory assumes that J̇EA =
f{J̇EAm}L2, where the scaled functional response is a function of food density, with a
maximum of 1 and the proportionality factor {J̇EAm} is constant. Reserve density in
juveniles and adults is at maximum at steady state if assimilation is at maximum; For

MV = [MV ]L3 it then has value mEm = jEAmL
v̇

= J̇EAmL
MV v̇

= {J̇EAm}L3

[MV ]L3v̇
= {J̇EAm}

[MV ]v̇
. Weak

homeostasis means that the chemical composition of the whole body (reserve and structure)
remain constant during growth at constant food density. This reserve dynamics as function
of the states of the individual (amounts of reserve and structure) is the only one that
satisfies this condition. The assumptions behind this reserve dynamics are

1 food is first converted to reserve that is mobilised

2 the mobilisation rate only depends on the state of the individual: amounts of reserve
and structure

3 reserve and structure obey strong homeostasis

4 the individual is isomorphic

5 weak homeostasis applies

The difference with first order dynamics is in the dilution by growth. First order dynamics
would result in J̇EC = ME

v̇
L

rather than J̇EC = ME( v̇
L
−ṙ). Since the DEB reserve dynamics

uniquely follows from assumption 1-5, first order dynamics is not weakly homeostatic, even
if assumptions 1-4 apply. The mean residence time of a molecule in reserve is ME

J̇EC
=

ME

ME( v̇
L
−ṙ) = ( v̇

L
− ṙ)−1. Notice that is time decreases with increasing length.
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2.4 Maximum growth

2.4.1 Question:

When is juvenile and/or adult growth maximal at constant food? Consider relative and
absolute measures for lengths and weights.

Hint:

Growth is maximal if the second derivetive of the size measure equals zero, while weight is
proportional to cubed length. Use DEBtool-function “shtime” in domain “animal” to see
that growth in length and weight differ considerably in morphology.

Answer:

At constant food, length changes as d
dt
L = ṙB(L∞ − L), so d2

dt2
L = −ṙ2B(L∞ − L). Since

the latter continuously decreases, growth in length is maximal at birth, so L = Lb.
Weight is proportional to cubed length, and cubed length changes as d

dt
L3 = 3L2 d

dt
L =

3L2ṙB(L∞ −L) and d2

dt2
L3 = 3ṙ2B(L∞ −L)(2L∞ − 3L). The latter equals zero if L = 2

3
L∞,

so growth in weight is maximal at L = max(Lb,
2
3
L∞).

Relative growth of length is maximal if d
dt

(
L−1 d

dt
L
)

= 0, i.e. if L d2

dt2
L =

(
d
dt
L
)2

. Sub-
stitution shows that the equation has no meaningful solution, while the relative growth in
length only decreases. This implies that it is maximal at birth.

Relative growth of weight is maximal if d
dt

(
L−3 d

dt
L3
)

= 0, which leads to the same
result as for relative growth of length.

Notice that growth of length and weight behave quite differently, but relative growth
of length and weight are behave quite similar.

2.5 Numerical behaviour of growth and reproduction

Motivation:

The numerical behaviour of the standard deb model for isomorphs is important to know
when we want to go from data to model parameters. This knowledge can help to detect
data sets that cannot be described by the model, which call for extra attention to the
cause.

2.5.1 Question:

How do lengths, weights and reproduction develop as functions of food density?

Hint:

Use DEBtool-animal routines “shmics” and “shtime” to make plots, after editing the pa-
rameters values in “pars.m”. Try to predict the effect of changes that you will see, before
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use actually see them. Notice the (sometimes rather complex) contraints on “reasonable”
parameter values.

Answer:

Observe that lengths and reproduction satiate monotoneously to an asymptotic value for
isomorphs at constant food, while weight-curves are sigmoidal, because they relate to cubed
length. Also observe that organisms do not complete the juvenile stage at low food levels.

2.6 Reserve buffer for reproduction

2.6.1 Question:

Why is the existence of a reserve buffer for reproduction basic in DEB models? Men-
tion some examples of rules for using this buffer which involve an increasing number of
offspring.

Hint:

These rules are discussed in 2.7.2.

Answer:

Allocation to reproduction is in continuous time, so allocation per time increment is incre-
mentally small only, not sufficient to produce an embryo. Buffer handling rule can span a
wide spectrum:

• some rotifers produce on egg after the other.

• waterfleas produce eggs clutch-wise, coupled to the moulting cycle.

• mussels spawn once a year, coupled to the season.

• albatrosses nest every other year.

• bamboo trees set seed once every seven or so years.
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Chapter 3

Energy, compounds and metabolism

3.1 Body mass and composition

Motivation:

It is not easy to measure the dry mass of a whale, or the wet mass of a bacterium (for very
different reasons). We, therefore, have to interconvert measurements in wet and dry mass
to link DEB predictions to measurements. It can also be hard to measure energy fluxes
(especially if they are small. We, therefore, need to be able to convert from mass fluxes to
energy fluxes and vice versa.

Given:

Suppose that wet weight equals ten times the dry weight, and the chemical indices of dry
reserve and structure are known.

3.1.1 Question:

What are the chemical indices of wet reserve and structure?

Hint:

The ratio of dry and wet weight does not seem to depend on the ratio of mass of reserve
and structure. What does this imply?

Answer:

If we exclude contributions from the reproduction buffer to weight for simplicity’s sake,
the relationship between mass in gram and C-mole is for ∗ = E, V

Wd = wEME + wVMV ; w∗ = 12nC∗ + 1nH∗ + 16nO∗ + 14nN∗

Ww = wwEME + wwVMV ; ww∗ = 12nC∗ + 1nwH∗ + 16nwO∗ + 14nN∗

29
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where nCE = nCV = 1 per definition (of C-mole) and nwHE = nHE + 2xE, nwOE = nOE + xE,
nwHV = nHV + 2xV , nwOV = nOV + xV . So wE + 18xE = wwE and wV + 18xV = wwV . Notice
that water does not affect the quantification of mass in C-moles (ME and MV ), only the
molecular weights (wE and wV ). The question is to specify the moles of water per carbon
in reserve and structure, xE and xV . The values of xE and xV must be found from

0 = 10Wd −Ww which was given

0 = 10(wEME + wVMV )− wwEME − wwVMV

0 = (10wE − wwE)mE + 10wV − wwV
0 = (9wE − 18xE)mE + 9wV − 18xV

As implied from what was given, the ratio of dry weight Wd and wet weight Ww (both in
gram) does not seem to depend on the ratio mE = ME/MV of mass of reserve ME and
mass of structure MV (both in C-mole). Our result shows that this is only possible if the
molecular weights of dry reserve and structure are equal, wE = wV and the fraction of water
in reserve and structure must be equal, xE = xV = x. The implication is x = wV /2 = wE/2.
So for nHE = nHV = 1.8, nOE = nOV = 0.5 and nNE = nNV = 0.2, we have for dry
mass wE = wV = 24.6 g/mol, x = 12.3 g/mol and the chemical indices for wet mass are
nwHE = nwHV = 1.8 + 2 × 12.3 = 26.4 and nwOE = nwOV = 0.5 + 12.3 = 12.8. The resulting
molecular weight for wet mass is wwE = wwV = 12+1×26.4+16×12.8+14×0.2 = 246 g mol−1,
which checks the result. Our result also shows that a constant (so nutrition independent)
ratio between wet and dry weight can only be an approximation at best.

3.1.2 Question:

What is the relationship between the fraction of energy in ingested food that is fixed in
reserve, κX , and the yield of reserve on food, yEX?

Hint:

What is the relationship between energy fluxes and mass fluxes in C-moles?

Answer:

The definition of the fraction of energy in ingested food that is fixed in reserve is κX =
ṗA/ṗX . The definition of the yield coefficient of reserve on food is yEX = J̇EA/J̇XA.
The relationship between energy and mass fluxes for food and reserve is ṗX = J̇XAµX
and ṗA = J̇EAµE, respectively. So κX = J̇EAµE

J̇XAµX
= yEXµE/µX . Notice that κX is really

dimensionless, but the units of yEX are a mole of E per mole of X; yEX is not really
dimensionless because E and X are different types.

3.1.3 Question:

Why do we need to specify the yield of faeces on food, yPE, to quantify the carbon dioxide
production that is associated with assimilation?
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Hint:

What are the possible destinies of carbon in food? What is the consequence of the yield
of reserve on food yEX = 1 for faecal production?

Answer:

In the context of the standard deb model, carbon in food can end up in reserve, faeces
and carbon dioxide. The conservation of carbon implies 1 = yCX + yPX + yEX . The yield
of carbon dioxide on food is given by yCX = 1 − yPX − yEX . If yEX = 1, we must have
yCX = yPX = 0.

3.2 Metabolic transformation

Motivation:

The standard DEB model has three degrees of freedom for metabolic transformations: as-
similation, growth and dissipation. This is key to the method of indirect calorimetry as
well as to the conceptual structure of the model. Although Chapter 4 deals with the appli-
cation of the material presented in Chapter 3, we here apply the concept of macrochemical
reaction equations to make it more concrete.

Given:

Biomass, in the standard DEB model, consists of reserve E and structure V . Assume
that they have composition CH2O0.5N0.15 and CH1.8O0.5N0.15, respectively. Food X has
composition CH1.8O0.5N0.2 and faeces P has composition CH1.8O0.5N0.15. Only 4 mineral
compounds are involved: carbon dioxide C (CO2), water H (H2O), dioxygen O (O2) and
ammonia N (NH3).

3.2.1 Question:

a Compute the stoichiometry for the assimilation process (for a C-mole of food) as a
function of the DEB parameters yEX and yPX .

b Compute the stoichiometry for the dissipation process (for a C-mole of reserve).

c Compute the stoichiometry for the growth process (for a C-mole of reserve) as a
function of the DEB parameters yV E.

d What are the dimensions and the meaning of DEB parameters yEX , yPX and yV E?

e What is the relationship between the fluxes feeding J̇XA, assimilation J̇EA, growth
J̇EG and dissipation J̇D = J̇ES + J̇EJ + (1− κR)J̇ER and the equations above? And
between these mass fluxes and energy fluxes ṗA, ṗG and ṗD?
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f What is the total consumption of dioxygen as a function of ṗA, ṗD and ṗG?

g Which assumptions are used in these expressions?

Hint:

What are the substrates and the products in each transformation? Use the conservation
of chemical elements to obtain the stoichiometric coefficients. Is dioxygen substrate or
product? What assumption about its availability is involved?

Answer:

Section 4.3.1 on metabolic transformation applies Section 3.5 on macrochemical transfor-
mation. The three transformations are for Y A

XX = Y G
EE = Y D

EE = 1:

assimilation A: Y A
XX X + Y A

OX O → Y A
EX E + Y A

PX P + Y A
CX C + Y A

HX H + Y A
NX N

growth G: Y G
EE E + Y G

OE O → Y G
V E V + Y G

CE C + Y G
HE H + Y G

NE N

dissipation D: Y D
EE E + Y D

OE O → Y D
CE C + Y D

HE H + Y D
NE N

Since assimilation is the only process that involves Y A
EX or Y A

PX , the superscript A is
suppressed; a similar reason applies to superscript G for Y G

V E. Moreover Y is replaced by
−y in these cases to express that the yield coefficients are constant and to make y positive.
Eq (3.12) can be applied to find the yield coefficients. For assimilation we have for the
chemical element C, H O and N in the rows with yXX = 1:


0
0
0
0

 =


1 0

1.8 0
0.5 2
0.2 0


(
−yXX
Y A
OX

)
+


1 1 1 0 0
2 1.8 0 2 3

0.5 0.5 2 1 0
0.15 0.15 0 0 1



yEX
yPX
Y A
CX

Y A
HX

Y A
NX


This can be rearranged to separate known from unknown


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1



Y A
CX

Y A
HX

Y A
OX

Y A
NX

 = −


1 1 1

1.8 2 1.8
0.5 0.5 0.5
0.2 0.15 0.15


 −yXXyEX

yPX



and solved
Y A
CX

Y A
HX

Y A
OX

Y A
NX

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1 1 1
1.8 2 1.8
0.5 0.5 0.5
0.2 0.15 0.15


 −1

yEX
yPX

 = −


1 1 1

0.6 0.775 .675
−1.05 −1.138 −1.088

0.2 0.15 0.15


 −1

yEX
yPX





3.2. METABOLIC TRANSFORMATION 33

The same can be done for growth for yEE = 1 with the results


Y G
CE

Y G
HE

Y G
OE

Y G
NE

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1 1
2 1.8

0.5 0.5
0.15 0.15


(
−yEE
yV E

)
= −


1 1

0.775 0.675
−1.24 −1.09
0.15 0.15


(
−1
yV E

)

And for dissipation


Y D
CE

Y D
HE

Y D
OE

Y D
NE

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1
2

0.5
0.15

( −yEE )
=


1

0.775
−1.137

0.15


The assumptions that we used are

• the basic structure of the standard DEB model (food is first converted to reserve
that is mobilised for other transformations)

• strong homeostasis (the chemical indices are fixed)

• dioxygen is a substrate that is non-limiting (Chapter 5 deals with multiple substrates)

Notice that reproduction is only represented in the form of overhead costs as part of the
dissipation flux. From a chemical point of view reserve of the mother is ‘transformed’ into
reserve of the offspring, which has the same composition.

The yields relate to the fluxes as Y A
EX = J̇EA/J̇XA = −yEX and Y A

V E = J̇V G/J̇EG =
−yV E. The dissipation flux collects all fluxes that represent the mineralisation of reserve;
this includes somatic and maturity maintenance, maturation and overhead of reproduction.

The yield coefficients have units dim(yEX) = mol E
mol X

and dim(yV E) = mol V
mol E

. Although the
difference is subtle, the yield coefficients are not dimensionless, since X, E and V represent
different types.

The relationships between mass and energy fluxes are ṗX = µX J̇XA, ṗA = µEJ̇EA, ṗG =
µEJ̇EG and ṗD = µEJ̇ED, were µX and µE are the chemical potentials of food and reserve,
respectively. The flux ṗG represents the flux allocated to growth, while κGṗG = µV J̇V G is

the flux fixed in new structure. So yV E = J̇V G

J̇EG
= κGṗG/µV

ṗG/µE
= κGµE

µV
.

The total flux of dioxygen is J̇O = Y A
OX ṗX/µX + Y D

ODṗD/µE + Y G
OGṗG/µE.

3.2.2 Question:

Is it really necessary to introduce a reserve pool to capture growth rate related changes in
biomass composition?
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Hint:

Suppose that food X of constant composition is transformed to biomass W in one step and
that biomass at growth rate ṙ and time t can be written as MW (t, ṙ) = MV (t) (1 +mE(ṙ))
for some specified smooth function mE(ṙ), where the composition of V and E is constant.
This strong restriction of possibilities is based on the idea that if we cannot obtain the
quantitative specification with the simplest change in composition, we cannot get it for
more complex changes. Write out the macro-chemical reaction equation of the conversion
of food to biomass and solve the specific growth rate, given an ingestion rate J̇XA.

Answer:

The situation in standard DEB model with its two pools is much simpler: food is trans-
formed to reserve and reserve to structure. While food density might fluctuate wildly,
growth changes smoothly are a result of the buffering capacity of the reserve pool. Now
this buffering does not exist. What are the implications?

The four possible transformations are X → yEXE, X → yV XV , E → yV EV and
V → yEVE, suppressing all mineral substrates and products. We have here yV E 6= y−1EV
and the values must be such that possibly limiting mineral compounds (such as ammonia)
are always products, never substrates. (Dioxygen is a typically substrate under aerobic
conditions, but is supposed to be non-limiting; facultative fermentation is discussed Chap-
ter 4.) This also applies to the standard DEB model, but we now have 4 transformations,
not 2. The interconversion of E and V causes a non-uniqueness that must but eliminated,
somehow, for instance by assuming that for each time increment we have one of three
possible cases:

X

E V
1
AAK ���

X

E V
2
���

-

X

E V
3
AAK

�

Suppose that biomass was growing at specific rate ṙ0 = ṙ(t) at t, so d
dt
MW (t, ṙ0) =

ṙ0MW (t, ṙ0), with MW (t, ṙ0) = MV (t) (1 +mE(ṙ0)) and mE(ṙ) is some known smooth

function of ṙ. To make it more concrete for mE = e{J̇EAm}
v̇[MV ]

(see Table 3.3), the standard

DEB model assumes e = g k̇M (1+LT /L)+ṙ
v̇/L−ṙ (Eq (2.21)), so mE(ṙ) is monotonically increasing

(for ṙ < v̇/L, which is always the case). This can only be linked to the intake rate if the
scaled functional response is constant for sufficiently long period; the difference with the
present situation is that this link is direct, and mE(ṙ) might be a different function.

The amount of food that is transformed in the infinitesimally small time interval
(t, t + dt) is MX(t) = J̇XA(t) dt, where J̇XA(t) might fluctuate wildly, including a white-
noise process. This food is converted to biomass at some unknown specific rate ṙ1 =
ṙ(t + dt), so MW (t + dt, ṙ1) = MV (t + dt) (1 +mE(ṙ1)), where we need to find ṙ1 =
(MW (t+ dt, ṙ1)/MW (t, ṙ0)− 1) /dt. Given mE and ṙo and ME and MV at t such that
ME/MV = mE(ṙ0), we need to solve ṙ1 and so θ in one of three cases

Case 1:
ME + θyEXMX

MV + (1− θ)yV XMX

= mE(ṙ1) with ṙ1 = J̇XA
θyEX + (1− θ)yV X

ME +MV
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Case 2:
ME − θME

MV + yV XMX + θyV EME

= mE(ṙ1) with ṙ1 =
yV X J̇XA + (yV E − 1)θME/dt

ME +MV

Case 3:
ME + yEXMX + θyEVMV

MV − θMV

= mE(ṙ1) with ṙ1 =
yEX J̇XA + (yEV − 1)θMV /dt

ME +MV

Case 1 applies if a solution for θ exists between 0 and 1. If not, case 2 applies if ṙ1 < ṙ0
and d

dṙ
mE(ṙ1) > 0 or ṙ1 > ṙ0 and d

dṙ
mE(ṙ1) < 0. Otherwise case 3 applies.

The problem we have to study is that a sudden change in food density X(t) translates
into a sudden change in ingestion rate J̇XA and so in growth rate ṙ1 and biomass composi-
tion mE(ṙ1). In the cases 2 and 3, θ is not necessarily small (so θ/dt can be large), so that a
possibly large fraction of one generalized compound needs to be transformed into the other
and in the next incrementally small time interval it might be reversed. These backward
and forward transformations represent not only an energy (and mineral) loss, but it might
be physically impossible to do this within a time increment. Stochasticity in the feeding
rate directly translates into stochasticity in the composition. Animals are organisms that
feed on other organisms. If food organisms would also follow this rule, food would have a
stochastic composition, which translates into a stochastic conversion efficiency. So apart
from being physically impossible, the construct also becomes hopelessly complex in situ-
ations where food availability is erratic. The discrete nature of food particles also causes
problems of a related nature, since nothing is smoothing the transitions. The conclusion
is that working with a variable composition in absence of a smoothing buffer is asking for
problems and the only way to avoid these problems is to partition biomass into pools of
constant composition.

3.3 Enzyme kinetics

Motivation:

The behaviour of Synthesizing Units will be a module in multivariate extensions of DEB
theory. In its most basic form, it has a straightforward relationship with classic enzyme
kinetics, but it is much easier to apply in complex situations, especially for systems that do
not fully specify the fate of all intermediates and the overall transformation is not reversible.
We discuss SUs at the beginning to show that univariate formulations are consistent with
the more elaborate ones that will follow.

3.3.1 Question:

a When we increase the values for the turnover rates of the enzyme-substrate complexes
in the transformation 1A + 1B → 1C, will the Rejection Unit resemble enzyme
kinetics better than the Synthesizing Unit, or not?

b Why?

c What if we decrease the values?
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Hint:

Use DEBtool, toolbox enzyme; edit k A and k B in pars enzyme.m and increase the values.
Run: clear; pars enzyme; shcontsu. Does this affect the SU behaviour? Why?

Answer:

The RU then resembles enzyme kinetics better for increasing k̇A and k̇B, the SU for de-
creasing values. This relates directly to the way RU and SU are obtained as limiting cases
of enzyme kinetics.

3.3.2 Question:

a What is the largest relative difference between the SU’s product formation rates of
the transformation nAA + nBB → C, given the substrate arrival fluxes J̇A and J̇B,
and of 1A+ 1B → C, given the fluxes J̇A/nA and J̇B/nB?

b For what ratio of arrival fluxes do you expect the largest relative difference?

c What is the significance of this result?

Hint:

Use DEBtool/enzyme routine su and try different values for nA and nB, starting with (1,
2), (2, 1), (2, 2), (1, 3), (2, 3), (3, 3). Calculate (su(X A/n A, X B/n B, 1, 1) - su(X A,

X B, n A, n B))/su(X A, X B, n A, n B). Observe that the problem is symmetric in the
two substrates, and that the relative difference is most extreme for a particular ratio of
substrate arrival rates, and a certain limiting case of these rates.

Answer:

The maximum relative difference is about 0.25, which is reached for nA = nB → ∞ and
J̇A = J̇B → 0; under these conditions the impact is maximal of the waiting time of the
other compound. The relative difference is not much in many practical cases (i.e. low
values for nA and nB), which is important because we frequently do not know the absolute
stoichiometry.

3.3.3 Question:

Can Liebig’s law of a single limiting substrate be written as a limiting case of SU kinetics?

Hint:

How does the SU behave in the transformation nCnAA + nCnBB → nCC, for increasing
values of nC?
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Answer:

Yes; we can decrease the amount of time that transformations have to be delayed because
the SU has to wait for the last-arriving substrate by increasing the number of copies of
substrate and that of product.

3.3.4 Question:

Compare the fractions of free-enzyme, and enzyme-substrate complexes for the SU, RU
and classic enzyme, in the transformation 1A+ 1B → 1C.

Hint:

Use DEBtool/enzyme routines su11, ru11 and enz11, and select conditions where SUs
and enzymes are close, and RUs and enzymes are close.

Answer:

The relative differences in binding fractions can be considerable; the substrate-SU complex
is relative more abundant than the substrate-RU or substrate-enzyme complexes, because
the dissociation rates for SUs is zero.

Given:

Suppose that we have a batch reactor with substrate A in concentration XA, substrate B
in concentration XB, and enzyme that catalises the transformation nAA+ nBB → C.

3.3.5 Question:

What will be the end-result, and how long do we have to wait to approximate this result, if
the enzyme behaves as a SU. Check your answer with DEBtool/enzyme routine shbatch.

Hint:

One of the substrates will not disappear completely; which one? Suppose that the other
substrate limited the transformation completely. It then disappeared as a zero-th-order
process, with what parameter? How long do we have to wait at least for almost complete
disappearance if the disappearance rate did not decrease?

Answer:

The end-result is a mix of enzyme, product in concentration XC = min(XA/nA, XB/nB)
and substrate A in the concentration XA − nAXC or substrate B in concentration XB −
nBXC ; one of the substrates completely disappeared.

If substrate i, for i ∈ {A,B}, is left over, and the other substrate hardly limited the
transformation, the initial appearence rate of product C is J̇C = JCm/(1 + X−1i k̇C/ḃi).
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The rate is almost constant, most of the time, but later drops gradually, depending on
the parameter values. If this applies, we can solve the waiting time t till the practical
end of the transformation from tJ̇C = niXi, which gives t = ni(Xi + k̇C/ḃi)/J̇Cm. This
is an underestimation, because the transformation slows down, and the other substrate
could have been co-limiting. The latter can be taken into account in a rough way, by
t = ni(Xi + k̇C/min(ḃi, ḃj))/J̇Cm. This still represents an underestimation.

Given:

SU-dynamics are orderly, i.e. not more that one event can occur during a time increment.
SUs bind irreversibly, i.e. substrates don’t dissociate from the SU-substrate complex, only
products can dissociate from the SU-product complex.

3.3.6 Question:

Figure 3.4 presents 4 basic classes of transformations A + B → C. The changes in the
fractions of bounded SUs can be written as d

dt
θ = k̇θ. What are the 4 matrices k̇ for these

classes?

Hint:

What are the possible states of the SUs in terms of fractions? Write out the changes of
these states in terms of sources and sinks. Check that all fraction sum to 1, so the sum
does not change.

Answer:

For the sequential-substitutable case we have for θ =
(
θ·· θA· θ·B θAB

)T
d

dt
θ·· = k̇AθA· + k̇Bθ·B − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· − k̇AθA·

d

dt
θ·B = ρBJ̇Bθ·· − k̇Bθ·B

d

dt
θAB = 0 so

d

dt
θ = k̇ssθ with k̇ss =


−ρAJ̇A − ρBJ̇B k̇A k̇B 0

ρAJ̇A −k̇A 0 0

ρBJ̇B 0 −k̇B 0
0 0 0 0


For the sequential-complementary case

d

dt
θ·· = k̇CθAB − ρAJ̇Aθ··
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d

dt
θA· = ρAJ̇Aθ·· − ρBJ̇BθA·

d

dt
θ·B = 0

d

dt
θAB = ρBJ̇BθA· − k̇CθAB so

d

dt
θ = k̇scθ with k̇sc =


−ρAJ̇A 0 0 k̇C
ρAJ̇A −ρBJ̇B 0 0

0 0 0 0

0 ρBJ̇B 0 −k̇C


For the parallel-substitutable case

d

dt
θ·· = k̇AθA· + k̇Bθ·B − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· + k̇BθAB − ρBJ̇BθA· − k̇AθA·

d

dt
θ·B = ρBJ̇Bθ·· + k̇AθAB − ρAJ̇Aθ·B − k̇Bθ·B

d

dt
θAB = ρBJ̇BθA· + ρAJ̇Aθ·B − k̇AθAB − k̇BθAB so

d

dt
θ = k̇psθ with k̇ps =


−ρAJ̇A − ρBJ̇B k̇A k̇B 0

ρAJ̇A −ρBJ̇B − k̇A 0 k̇B
ρBJ̇B 0 −ρAJ̇A − k̇B k̇A

0 ρBJ̇B ρAJ̇A −k̇A − k̇B


For the parallel-complementary case

d

dt
θ·· = k̇CθAB − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· − ρBJ̇BθA·

d

dt
θ·B = ρBJ̇Bθ·· − ρAJ̇Aθ·B

d

dt
θAB = ρAJ̇Aθ·B + ρBJ̇BθA· − k̇CθAB so

d

dt
θ = k̇pcθ with k̇pc =


−ρAJ̇A − ρBJ̇B 0 0 k̇C

ρAJ̇A −ρBJ̇B 0 0

ρBJ̇B 0 −ρAJ̇A 0

0 ρBJ̇B ρAJ̇A −k̇C
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Chapter 4

Univariate DEB models

4.1 Wood production

Motivation:

Some parts of organisms are neither reserve nor structure. Failure to recognize this easily
leads to the conclusion that trees have exceptionally small specific maintenance costs, which
they have not.

Given:

Peterson et al 1997, Ecology and management of Sitka spruce, UBC Press, Vancouver,
present data for Queen Charlotte Islands in British Columbia showing that the height
in m of Picea sitchensis grows von Bertalanffy, L(t) = 56 − (56 − 12.5) exp{−0.02t} for
t > 10 a. The fit is so close that the data were probably generated by this relationship.
Merchantable wood volume relates to height as V = 35(L − 12.5) m3/ha for L > 12.5 m,
with about 350 trees per hectare.

4.1.1 Question:

How does the trunk diameter LD grow? Make a plot.

Hint:

Assume that the trees’ shape is somewhere between a cone and a pillar, so volume V =
αL2

DL, with π < 12α < 3π. Write the von Bertalanffy growth in the differential equation
d
dt
L = 0.02(56− L), and consider d

dt
LD.

Answer:

Volume V grows as d
dt
V = 0.1 d

dt
Lm3/a, and diameter LD grows in a ways that can easily

be expressed in terms of L.
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4.1.2 Question:

Can you link wood production to assimilation, maintenance and/or growth?

Hint:

Assume that trees in a forest behave as V0-morphs, so change in structural mass equals
d
dt
MV ∝MV∞ −MV , see Eq. (4.10). Assume also that structural mass MV ∝ L. What is

the asymptotic behaviour of wood production?

Answer:

Since wood production ceases, if we believe Preston et al, wood production cannot be
associated with assimilation and dissipation, because these processes do not cease. It
must therefore be associated with growth only. Other data, however, suggest that wood
production continues if the tree is already fully grown.

4.2 Carbon dioxide production

Motivation:

Some essential compounds that are taken up are also excreted, which might seem inefficient
by human judgement. Photosynthesis is not the only process that fixes carbon dioxide.
The stoichiometric macro-reaction equation can be decomposed into several constituting
processes; the relative importance of these sub-processes depends on environmental condi-
tions.

Given:

Methanotrophs use methane (CH4) as energy source; methane is the only carbon source
in Type I methanotrophs, such as Methylomonas, Methylomicrobium, Methylobacter and
Methyloccus, which use the monophosphate pathway to process formaldehyde (CH2O), a
metabolite of methane. Methane and carbon dioxide (CO2) are carbon sources for Type
II methanotrophs, such as Methylosinus and Methylocystis, which use the serine pathway
to process formaldehyde. These organisms can also fix di-nitrogen.

4.2.1 Question:

What are the contraints for the absence of carbon dioxide consumption and production
for Type II methanotrophs under methane-limiting conditions, with ammonia as nitrogen
source?
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Hint:

The catabolic and anabolic aspects of assimilation can written as generalized transforma-
tions. We here use classic notation for chemical transformations with yield coefficient’s
Y∗∗, which are negative if one of the compounds disappears and the other appears; this is
why yield coefficients on the right-hand side of the arrow have a minus-sign. This points
to a notational problem that is hard to deal with in a consequent way, due to the various
possible levels of organisation that can be considered. Yield coefficients Y are ratio’s of
fluxes, but notice that yield coefficients y∗∗ have almost the same interpretation, but they
are treated as positive constant mass-mass couplers. Specific fluxes j∗ are here taken to
be positive, although it might be better to take them negative if the compound disassears
(but this has counter-intuitive consequences at other places.)

Assimilation energy generation at specific rate jCXA
CH4 + 2 O2 → CO2 + 2 H2O (plain methane oxidation, as in your kitchen)

Assimilation Type I anabolism at specific rate jAXA
CH4 + YOX O2 +nNE NH3 → CHnHE

OnOE
NnNE

− YHX H2O

with

{
YHX = −2 + nHE/2− nNE3/2
YOX = −yHX/2 + nOE/2

Assimilation Type II anabolism at specific rate jAXA
CH4 + YCX CO2 + YOX O2 + nHE NH3 → y′EX CHnHE

OnOE
NnNE

− YHX H2O

with


YCX = y′EX − 1
YHX = −2− nHE3/2− nHE y′EX/2
YOX = −YCX + nOE y

′
EX/2− YHX/2

Assimilation , total (for Type I and II methanotrophs) at specific rate jXA = jCXA + jAXA
CH4 + YCX CO2 + YOX O2 + nHE NH3 → yEX CHnHE

OnOE
NnNE

− YHX H2O

with


YCX = yEX − 1
YHX = −2− nHE3/2− nHE yEX/2
YOX = −YCX + nOE yEX/2− YHX/2

The yield of reserve on substrate can be written as YEX = −yEX = −jAXA/jXA.

Apart from assimilation, which converts substrate, here methane CH4, into reserve CHnHE
OnOE

NnNE
,

we have

Maintenance transformation at specific rate jEM
CHnHE

OnOE
NnNE

+ YOE O2 → CO2 − YHE H2O + nNE NH3

with

{
YHE = nNE3/2− nHE/2
YOE = 1− nOE/2− YHE/2

Maintenance burns reserve, only minerals result,

Growth transformation at specific rate jEG
CHnHE

OnOE
NnNE

+ YOE O2 →
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yV E CHnHV
OnOV

NnNV
− YCE CO2 − YHE H2O − YNE NH3

with


YCE = yV E − 1
YHE = −nHE/2 + nHV yV E/2− YNE3/2
YOE = −nOE/2 + nOV yV E/2− YCE − YHE/2
YNE = −nNE + nNV yV E

Growth transforms reserve into structure plus minerals. The latter not only result
from stoichiometric constraints, but also represent overhead costs for growth. The
growth process can be partitioned into catabolic and anabolic components jAEG =
yV EjEG and jCEG = (1 − yV E)jEG, just like assimilation. The transformation of the
catabolic component of growth is the same as that of maintenance, while the anabolic
component does not generate carbon dioxide.

The Type II anabolic component of assimilation is the only process that fixes carbon
dioxide. The yield of carbon dioxide on substrate, YCX , can be positive as well as negative.
The total carbon dioxide flux is zero if:

0 = −YCX jXA + jEM − YCE jEG

Write now the fluxes jXA, jEM and jEG in terms of substrate availability. Consider steady
states to symplify the result and use the decomposition of assimilation into a catabolic and
anabolic component to judge whether or not the carbon dioxide flux can be zero.

Answer:

The carbon dioxide flux cannot be zero if yEX < 1, because the anabolic component
of assimilation is than producing carbon dioxide, and no other process is fixing it. The
condition is, however, more stringent. The specific substrate flux is jXA = fjXAm, the
specific maintenance flux of reserve is jEM = yEV k̇M and that for growth is jEG = yEV ṙ =
yEV

f−ld
f+g

k̇E, with yEV = y−1V E and ld = gk̇M/k̇E. So the carbon dioxide flux is zero if

yV E(yEX − 1)fjXAm = k̇M + (1− yV E)k̇E
f − ld
f + g

or

0 = (yEX − 1)jXAmf
2 +

(
g(yEX − 1)jXAm − k̇MyEV − (yV E − 1)k̇E

)
f + (yEV − 1)k̇M

This can be summarized by 0 = af 2 + bf + c. The scaled functional response f can be
solved from this quadratic equation in f . A positive real solution for f exists if yEX > 1,
and 0 < f < 1 if

√
b2 − 4ac− b > 2a, or −c < b+ a. A zero carbon dioxide flux is possible

for some substrate density if

(1 + g)(yEX − 1)jXAm + (1− yV E)k̇E > k̇M

Some text books mention that for each produced carbon dioxide molecule, two methane
molecules have been consumed by a methanotroph. This exercise shows, however, that
such a fixed relationship does not exist; it is very sensitive for environmental conditions.
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Methane burning in assimilations’ catabolic component should generate enough energy
to drive assimilations’ anabolic component. So µX j

C
XA > (µE −µX)jAXA or µX(1− yEX) >

(µE − µX)yEX or yEX > µE/µX .

Notice that, like carbon dioxide, ammonia is taken up as well as excreted. We know
apriori that ammonium uptake always exceeds excretion at steady state.

4.3 Numerical behaviour of fluxes and states

Motivation:

The numerical behaviour of the standard deb model for isomorphs is important to know
when we want to go from data to model parameters. This knowledge can help to detect
data sets that cannot be described by the model, which call for extra attention to the
cause.

4.3.1 Question:

How do fluxes of compounds in and out the organism depend on food density? How do
absolute fluxes compare with relative fluxes with respect to the amount of structure and
to weight?

Hint:

Use DEBtool-animal routines “shflux”, “shflux struc”, “shflux weight” and “shpower”,
after editing the parameters values in “pars.m”. Try to predict the effect of changes
that you will see, before use actually see them. Can you explain the differences between
structure-specific and weight-specific fluxes in early embryo’s? Why can the relative growth
of embryos be larger than that of juveniles?

Answer:

Initially embryos have a negligibly small structure, which implies that the structure-specific
fluxes are very large. Weights include reserve and structure. The initial amount of reserve
is substantial, so weight-specific fluxes are not blown up. Embryos get more reserve from
the mother than juveniles can possibly obtain by eating. This is why embryos can grow
faster than juveniles on a relative basis.

4.3.2 Question:

a How do respiration ratios depend on body size and food density?

b How does this depend on the elemental composition of reserve and structure?
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Hint:

Use DEBtool-animal routine “shratio”, and edit the composition values in “pars animal.m”.
Starting from an equal composition of reserve and structure, make the reserve richer in
lipids than the structure, and predict the effect on the ratios before you see the result. The
table 4.2 of the DEB book gives typical compositions of lipids and proteins.

Answer:

You will see that if the elemental compositions of reserve and structure do not differ a
lot, the respiration ratio stays more or less constant. This explains why respiration ratios
are usually taken to be constant in experimental animal physiology. You can also see that
if the composition differ substantially, the respiration ratio varies a lot with size. This
explains why respiration ratios are usually not taken to be constant in microbiology.

4.3.3 Question:

Eggs have initially a certain amount of reserve, hardly any structure and zero maturity.
How is this reserve spend at birth? In what respect differs foetal development from this
pattern?

Hint:

What are the possible destinies of reserve? Is all reserve used? Does a foetus develop
faster or slower than an egg? Why? Use DEBtool routine birth pie and birth pie foetus
in toolbox animal, but try to understand the result.

Answer:

The comment for section 4.3.3 explains the evaluation.

4.4 Practical identification of parameter values

Motivation:

Since quantities that are easy to measure (weight, respiration) have contributions from dif-
ferent processes, they cannot serve as variables in mechanistic models, while such variables
(structure, reserve) can typically not be measured directly. This calls for auxiliary theory
that links the easy-to-measure quantities to explanatory variables. See KooySous2008 for
more details.

Given:

Suppose that a certain length measure has hardly contributions from reserve and that the
standard DEB model applies with the somatic and maturity maintenance rate coefficients
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being equal, k̇M = k̇J , the surface-linked maintenance costs are absent {J̇ET} = 0, and
the overhead costs of reproduction are 0.05, so κR = 0.95. At abundant food we measured
length at birth Lb = 1 cm, ultimate length L∞ = 5 cm, age at birth ab = 7 d, von
Bertalanffy growth rate ṙB = 0.01 d.

4.4.1 Question:

a What fraction of the initial reserve is left over at birth?

b What is this fraction for a scaled functional response f = 0.7, and what values for
the measured quantities can we expect at this functional response?

Hint:

What is the implication of k̇M = k̇J? Which of the measured values depend on food
availability? What do we need to obtain these values for other food availabilities? Look
at get pars g and iget pars g in DEBtool/animal.

Answer:

The constraint on the maintenance rate coefficients implies that stage transitions occur
at fixed amounts of structure. We need (compound) DEB parameters first, which are
independent of food availability, and then use these to obtain the quantities of interest.
Start Octave, set the path to DEBtool/animal and type p = [1; 1; 5; 7; 0.01]; [q,

U] = get pars g(p) . The result UE = 7.195, 1.6606 d.cm2 represents the scaled reserve
at age 0 and ab, so the fraction of reserve that is left over at birth is 1.66/7.195 = 0.23. We
now type [r, U] = iget pars g(.7,q) . The result UE = 6.7707, 1.1624 d.cm2 shows
that the fraction of reserve that is left over at birth now equals 1.16/6.77 = 0.17, and that
the ultimate length is r(3) = 3.5 cm, the age at birth r(4) = 7.4 d, and the von Bertalanffy
growth rate r(5) = 0.0108 d−1. Notice that the von Bertalannfy growth rate is now higher,
and the ultimate length lower than at abundant food, but the growth curves at different
food levels do not intersect. The effect of the reduced food availability on the fraction
of reserve that is left over at birth is relatively large because the reserve density at birth
drops from 1 till 0.7, and because a lower initial reserve increases the age at birth, and so
the cumulative maintenance costs.

4.4.2 Question:

a If in addition to what is given in the previous question we measured a length at
puberty of Lp = 3 cm and an ultimate reproduction rate of 0.7 d−1, what is the
fraction of mobilised reserve that is allocated to somatic maintenance plus growth,
and what is the energy conductance?

b Why is this fraction depending on the length at puberty?
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Hint:

Look at get pars r .

Answer:

Type get pars r([1; 1; 3; 5; 7; 0.01; 0.7]) and find the answer κ = 0.729. This
estimate depends on the length at puberty because of the maturity maintenance costs are
competing with allocation to reproduction.

Given:

Suppose that we have measured at abundant food (f = 1) length at birth Lb = 4.4 cm,
length at puberty Lp = 10.2 cm, ultimate length L∞ = 55 cm, von Bertalanffy growth rate
ṙB = 0.03 d−1, and ultimate reproduction rate Ṙ = 2.6 d−1. In addition we have measured
at scaled functional response f = 0.7: Lb = 4.4 cm, Lp = 10.1, L∞ = 17.5 cm, ṙB =
0.042 d−1 and ultimate reproduction rate Ṙ = 1 d−1. We don’t want to use information
about age at birth, because we are not certain that our organism don’t delay the start of
the development. Again we assume that the standard DEB model applies, the surface-
linked maintenance costs are absent {J̇ET} = 0, and the overhead costs of reproduction
are 0.05, so κR = 0.95. This time, we don’t want to make assumptions about the maturity
maintenance costs relative to the somatic maintenance costs.

4.4.3 Question:

a What values have the following DEB parameters: fraction of mobilised reserve allo-
cated to soma κ, energy investment ratio g, maturity and somatic maintenance rate
coefficient k̇J and k̇M , energy conductance v̇, scaled maturity at birth and puberty
M b

H/{J̇EAm} and Mp
H/{J̇EAm}?

b Which of these parameters depend on the shape of the organism, so on the definition
of the length measure that we have used?

c What fractions of initial reserve are left over at birth?

Hint:

Look at get pars s in DEBtool/animal. The numerical procedure has a very small domain
of attraction, so it might be difficult to find the answer; the initial conditions might need
some editing in get pars s.

Answer:

Type [q, U] = get pars s([1 0.7; 4.4 4.4; 10.2 10.1; 25 17.5; 0.03 0.042; 2.6

1]’) . The answer is: κ = 0.81, g = 0.21, k̇J = 0.36 d−1, k̇M = 0.54 d−1, v̇ = 2.8 cm/d,
M b

H/{J̇EAm} = 1.46 d cm2 and Mp
H/{J̇EAm} = 20.7 d cm2.
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The fractions of reserve that are left over at birth is 30.46/41.65 = 0.73 for f = 1 and
21.14/32.57 = 0.65 for f = 0.7. The ages at birth are ab = 5.1 d for f = 1 and 5.2 d,
respectively.

All values that have cm in their units depend on length. these are v̇, M b
H/{J̇EAm} and

Mp
H/{J̇EAm}.

4.5 Parameter estimation

Motivation:

Understand some problem on parameter estimation; most applications of DEB theory
require knowledge of parameter values.

Given:

Consider, for the sake of giving an example, the following data for Homo sapiens at abun-
dant food living at constant temperature in the thermal neutral zone. The bold-typed
values are just rough guesses based on scaling relations.

Length at birth 50 cm
Length at puberty 150 cm
Ultimate length 180 cm
Wet weight at birth 3500 g
Wet weight at puberty 45000 g
Ultimate wet weight 85000 g
Age at birth 266 d
Age at puberty 12 × 365 d
Daily energy intake at ultimate length 2500 × 4.18 kJ d−1

Density of dry biomass 0.125 g cm−3

Composition of dry structure CH2O0.5N0.15

Composition of dry reserve CH1.8O0.5N0.15

Yield of food on reserve yXE 1.3 mol mol−1

Yield of reserve on structure yEV 1.2 mol mol−1

Fraction of mobilised reserve allocated to soma 0.8
The wet weight - dry weight ratio is 8.

4.5.1 Question:

a Using only the given observations, estimate shape coefficient δM, specific somatic
maintenance rate [ṗM ] specific costs for structure [EG] energy conductance v̇, max-
imum specific assimilation rate ṗAm, chemical potential for reserve µE, maturity
maintenance rate coefficient k̇J , maturity threshold at birth Eb

H , maturity threshold
at puberty Ep

H ,

b Estimate the wet weights at birth, puberty and ultimate length.
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c Are they reasonable? If not, redo the calculations with new values for any of the
parameters highlighted (in bold) in the table.

d What fraction of weight represents reserve?

Hint:

Write a subroutine for nmregr that gives the expected observations as function of the pa-
rameters that must be estimated and obtain all estimates simultaneously. To find initial
estimates, first use the observations one by one to get an approximation (and an under-
standing of the relationships). What are the implications of temperature being constant
and of living in the thermal neutral zone? How does age relate to size at birth for foetal de-
velopmetn? What is the von Bertalanffy growth rate in terms of the parameters that must
be estimated? How can this help to get length and age at at puberty? How does physical
length relate to structural (volumetric length)? How does the energy investment ratio g
relate the chemical potential of reserve µE? How does the maximum specific assimilation
relate to the maximum food intake rate?

Answer:

If the temperature is constant, rate parameters are constant. Living in the thermal neutral
zone means no energy is required to maintain a constant body temperature (at 37/circC),

so {ṗT} = 0. The von Bertalannfy growth rate is ṙB = k̇M/3
1+f/g

, see Eq. (2.24), and the

energy investment ratio is g = v̇[MV ]

κ{J̇EAmyV E
= v̇dV yEV

κwV {ṗAmµE
, see Table 3.3.



Chapter 5

Multivariate DEB models

5.1 Simultaneous nutrient limitation

Motivation:

Most literature deals with population rather than system dynamics, and is sloppy with the
treatment of nutrients. This is partly due to the absence of proper nutrient balances for
most models.

5.1.1 Question:

What is the effect of the metabolic availability of excreted nutrients on chemostat dynam-
ics?

Hint:

Use DEBtool-alga routine “shchem” and “shchem1” for the comparison.

Answer:

You will see large effects for small throughput rates. When you think of a community
as a more complex chemostat, this observation should motivate you to include nutrient
recycling in all basic community models.

5.1.2 Question:

When can we expect situations where reserve densities increase for decreasing growth
rates?

Hint:

Use DEBtool-alga routine “shchem” and “shchem1” for the comparison. Look for effects
of the excretion parameters.
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Answer:

We can expect this for non-limiting reserves that are hardly excreted.

5.2 Plant physiology

Motivation:

Plants are difficult to model, due to their plasticity of responses to environmental factors
(light, water, nutrients). Many of such responses follow from simple allocation rules, and do
not need explicit regulatory mechanisms to mimic such responses in a DEB-based model.

5.2.1 Question:

How do plants react to reductions of light and water in terms of growth of roots and shoots,
and changes in the ratio of shoot over root biomass?

Hint:

Use DEBtool-plant routine “shtime” to see such affects. Try to predict them before you
play with parameter values.

Answer:

You will see that for proper combinations of parameter values plants’ allocation to roots
versus shoots partly compensates adverse effects on growth rates, despite the fact that
such a response is not incorporated explictly in the DEB model.

5.2.2 Question:

Most flowering plants first produce one or two special leaves after germination, which are
very rich in reserves. These leaves, named cotyledons, usually differ in shape from normal
leaves. Can you find this back in the simulation? Does the occurrence of a peak in reserve
density depend on combinations of parameter values?

Hint:

Use DEBtool-plant routine “shtime” to see such affects.

Answer:

You will see that for proper combinations of parameter values a peak in shoots’ reserve
density occurs during a short period, just after germination. Notice that the occurrence of
this behaviour has not been incorporated explicitly in the DEB model; it is a consequence of
how roots and shoots exchange metabolites. This, however, does not exclude the existence
of regulation mechanisms for the growth and absorption of cotyledons.
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5.3 Kidney size and function

Motivation:

Rules for substrate uptake and use of individuals imply constraints for lower levels of
organisation. Surface area/volume relationships are basic for understanding the quatitative
aspects of metabolism at all levels of organisation.

Given:

The primary function of kidneys is to remove wastes that are dissolved in the body fluid
of animals, especially nitrogen waste. Kidneys also have a function in the regulation the
ion and water balance of the body. Adult human kidneys typically produce 160-180 litre
of filtrate each day. Most of this is fed back to the body fluid, a fraction of 0.005 typically
ends up as urine.

The two kidneys of vertebrates have a particular anatomy. The central tissue consists
of the medulla, where most of the reabsorption occurs, and the renal pelvis, that collects
fluids for the ureter, i.e. the outgoing tube that feeds the bladder. Kidneys’ peripheral
tissue consists of the cortex, where the filtering occurs.

5.3.1 Question:

a How relates kidney function to kidney size in a strict isomorph?

b What are the constraints for a constant work load for the cortex?

Hint:

Focus on the maximum nitrogen removal rate, which occurs during maximum feeding rate,
so f = 1. Write it as a weighted sum of squared and cubed body length. Assume that
kidney volume is isomorphic and write the volume of the cortex as a weighted sum of
squared and cubed kidney length. The latter is proportional to body length. Equate the
weight coefficients for squared length for removal to that for size. Do this also for the
weight coefficients for cubed length. This give a constraint for the relative size of the
cortex in terms of parameter values.

Answer:

The flux of nitrogen waste can be written as J̇N = ηNAṗA+ηNDṗD +ηNGṗG (cf page 147 of
the DEB book). All powers ṗ∗ are cubic polynomials in (scaled) length (cf page 123). This
means that nitrogen waste production can be written as a cubic polynomial in (scaled)
length

J̇N = J̇N3l
3 + J̇N2l

2 + J̇N1l + J̇N0

The coefficients J̇N∗ can be obtained by straightforward substitution in the expressions
given at page 123 where we take e = 1.
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A reasonable approximation for the cortex volume is Vc = δ (L3 − (L− Lc)3), where
δ is a dimensionless coefficient that takes care of the kidney shape, L is a typical length
measure of the kidney, and Lc is the thickness of the cortex.

If cortex thickness Lc would be proportional to kidney length L, cortex volume would be
proportional to L3, and so proportional to body volume. Since nitrogen waste production
is a weighted sum of squared and cubed length, this would imply that the work load of the
cortex tissue decreases with body size.

Let us now allow more complex relationships between cortex thickness and kidney
length, and linearize this function: Lc(L) = Lc0 + δcL. Obviously we must have L > Lc0,
and we assume that the kidney is not functional for smaller body sizes. The cortex volume
now amounts for δm = 1− δc to

Vc = δ
(
(1− δ3m)L3 + 3δ2mLc0L

2 − 3δmL
2
c0L+ L3

c0

)
The workload of cortex tissue remains constant during development if

J̇N3 = J̇Nr(1− δ3m)

J̇N2 = 3J̇Nrδ
2
mLc0/L0

J̇N1 = −3J̇NrδmL
2
c0/L

2
0

J̇N0 = J̇NrL
3
c0/L

3
0

Where J̇Nr is a reference flux, and L0 a reference length. These 4 equations determine J̇Nr,
L0, δc = 1− δm and Lc0 as function of parameters of the DEB.



Chapter 6

Effects of compounds on budgets

6.1 Ageing

Motivation:

Ageing, as a module in DEB theory, is an effect of free radicals that applies most organ-
isms.

Given:

The growth period is short relative to the life span.

6.1.1 Question:

a How many parameters has the ageing module of the standard DEB model?

b How many parameters have the Weibull and the Gompertz models for ageing?

c How can both these different models be special cases of the DEB module?

d Which species are affected by ageing?

Hint:

What does plasticity mean for a model? See section 1.9 of the document Basic methods
in Theoretical Biology on ‘Realism’.

Answer:

The DEB module has 2 ageing parameters: the ageing acceleration ḧa and the Gompertz
stress coefficient sG. If the growth period is short, these two parameters can be reformulated
in the Weibull and Gompertz ageing rates, ḣW and ḣG. Both the Weibull and the Gompertz
ageing models also have 2 parameters. The general Gompertz model and the Weibull model
with shape parameter 3 are special cases of the DEB module, but because of the larger
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shape plasticity of the DEB module, the general Weibull model can be approximated
very well, see Section 6.1.1 of the comments on ‘Empirical Weibull curves’. Part of this
larger plasticity is due to the energetics module of the DEB model; the Weibull and the
Gompertz models don’t have such a coupling. Only if tissue differentiation is irreversible
and if other causes of death play a minor role, species are affected by ageing (as an effect
if free radicals).

6.2 Toxicokinetics

Motivation:

Effects are linked to internal concentrations. First order accumulation/elimination is the
most simple and basic kinetics, on which countless variations can be based.

Given:

Suppose that we have measured the intenal concentrations 0, 3, 4, 4.5, 4.75, and 4.9 mmol/g
during 0, 1, 2, 3, 4, and 5 days of exposure to a compound with external concentration of
1 mM.

6.2.1 Question:

a Give an estimate for the elimination rate and the Bio-Concentration Factor.

b How accurate are these estimates?

Hint:

Use DEBtool/tox/acc for the regression model.

Answer:

See DEBtool/tox/mydata acc. The result is an elimination rate of 0.9 d−1, and a BCF of
4.88 l/g. The standard deviations are very large.

Given:

Suppose that we also have measured the internal concentrations 5, 3, 2, 1, 0.5, 0.25 mmol/g
during 0, 1, 2, 3, 4, and 5 days of elimination, where the compound has been absent in the
environment.
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6.2.2 Question:

a What are the estimates for the elimination rate and the Bio Concentration Factor,
using this extra information?

b How accurate are these estimates?

Answer:

See DEBtool/tox/mydata acceli. The result is an elimination rate of 0.58 d−1, and a BCF
of 5.47 l/g. The standard deviations are still large, but much smaller than for accumula-
tion data only. Notice that the fit for the accumulation phase is less good, because the
elimination phase suggest different parameter values.

Given:

Two data sets of internal concentrations at a constant concentration of some compound
in the water in small and larger test animals at 0, 1, 2, 3, 4, 5 days: 0, 3.1 , 5.9, 8.1, 9.,
9.5µM/g for the small ones and 0, 2.9, 5.7, 7.9 8.9 9.4µM/g for the larger ones.

6.2.3 Question:

Do the accumulation and elimination rates differ significantly?

Hint:

If they differ, is it likely that the BCF is equal? Fit the two curves under the nill and the
alternative hypothesis, and compare the differences in goodness of fit.

Answer:

Because the size of the animals differed, it is likely that the BCF is constant, but the
elimination rates differ, so we choose for the parametrization C(t) = K(1− exp{−k̇et}.

We now write a script file where we fill the data, define the regression functions, esti-
mate the parameters and obtain the standard deviations.
tc1 = [0 1 2 3 4 5; 0, 3.1 5.9 8.1 9. 9.5]’;

tc2 = [0 1 2 3 4 5; 0, 2.9, 5.7, 7.9 8.9 9.4]’;

function f = myacc0(p,tc)

K = p(1); ke = p(2);

f = K*(1-exp(-tc(:,1)*ke));

end

p0 = nrregr("myacc0",[10 .3]’,[tc1;tc2]);

ssq0 = ssq("myacc0",p0,[tc1;tc2]);

function [f1,f2] = myacc1(p,tc1,tc2)

K = p(1); ke1 = p(2); ke2 = p(3);
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f1 = K*(1-exp(-tc1(:,1)*ke1));

f2 = K*(1-exp(-tc2(:,1)*ke2));

end

p1 = nrregr("myacc1",[15 .3 .3]’, tc1, tc2);

ssq1 = ssq("myacc1",p1, tc1, tc2);

6 * log(ssq0/ssq1)

The result is 0.414, which is not significant at the 5 % level, because under the null hy-
pothese this represents a random trial from a Chi-square distribution with 1 degree of
freedom.

6.3 Concentration-Survival relationships

Motivation:

Current practice is to standardize the exposure period to a test compound and use the
data at the end of the bioassay only. This means that hardly anything is known about the
dynamic aspects of toxic effects.

Given:

The exposure time of 1 day, to a test compound at concentrations 0, 1, 2, 4, 8, 16 mM, and
surviving individuals 10, 9, 10, 8, 4, 1, starting with 10 individuals in all concentrations.

6.3.1 Question:

Determine the NEC and the LC50.

Hint:

Use DEBtox or DEBtool/tox/fomort and DEBtool/tox/lc50.

Answer:

Type t = [0 1]’; c = [0 1 2 4 8 16]’;

S = [10 10 10 10 10 10; 10 9 10 8 4 1];

p = nmsurv2(‘‘fomort’’, [.02 1.5 .6 1]’,t,c,S);

p = nmsurv2(‘‘fomort’’, p, t, c, S);

lc50(p([2 3 4]),1);

The elimination rate walks to large values in this example, which explains the conver-
gence problems. The standard deviation of the NEC can only be obtained here by fixing
the elimination rate. The standard deviations appear after:
[cov, cor, sd] = psurv2(‘‘formort’’, [p, [1 1 1 0]’], t, c, S); [p, sd]

The result is NEC = 2.9 (sd 1.1) mg/l, the LC50.1d = 6.9 mg/l.
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6.3.2 Question:

What would be the toxicity parameters if the exposure period was not 1 day, but 2 days?

Answer:

Without any recalculation we know that the blank mortality rate , the killing rate and the
elimination rate is two times as small. This follows directly from a change in time-units.

6.3.3 Question:

What would be the toxicity parameters if the concentrations are multiplied by a factor x?

Answer:

The NEC will be multiplied by the factor x, and the killing rate will be divided by that
factor.

Given:

Suppose that survival at 5 mM is monitored only. The observed number of survivors at
exposure times 0, 1, 2, 3, 4, 5 days is 100, 69, 17, 3, 0, 0.

6.3.4 Question:

What are the NEC and the LC50 if blank mortality can be excluded?

Answer:

Type t = [0 1 2 3 4 5]’; c = 5; S = [100 69 17 3 0 0]’; p = scsurv2(‘fomort’,

[1e-8 1.5 .6 1; 0 1 1 1]’, t, c, S); lc50(p([2 3 4],1),t)

The result is NEC = 0.73 mM, the LC50 for day 1 2 3 4 5 is 7.2, 2.9, 1.9, 1.5, 1.3 mM.

6.4 Extrapolation from acute to chronic LC50 values

Motivation:

Many bioassays concern short-term exposures to compounds, while the actual interest is
frequently in long-term effects.

Given:

Two sets of LC50 values for 1, 2 and 3 days of exposure to a compound in mg/l: 23.5, 8,
4.5 for set 1 and 23.5, 7.9, 4.5 for set 2.
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6.4.1 Question:

Which of these sets has the lowest LC50? (Don’t calculate them; just look at the data.)

Hint:

The LC50.1d and LC50.3d are the same for these sets, only the LC50.2d differs a little.

Answer:

Set 1 has the lowest ultimate LC50, because the LC50 for set 1 decreases more between
day 2 and 3.

6.4.2 Question:

What is the LC50.4d and the ultimate LC50 for the two sets?

Hint:

First obtain the parameter values using DEBtool/tox/lc503, then use lc50 to obtain the
values for 4d. Do we need to calculate the ultimate LC50?

Answer:

Type:
tc1 = [1 2 3; 23.5 8 4.5]’;

tc2 = [1 2 3; 23.5 7.9 4.5]’;

p1 = lc503(tc1, [.5 1 .1]);

lc50(p1,4); p2 = lc503(tc2,p1); lc50(p2,4);

The LC50.4d appears because the output of lc50 is not assigned to a variable. The
ultimate LC50’s equal the NEC, which are in p1(1) and p2(1), respectively. They appear
by typing: [p1, p2] . This can be checked by typing:
lc50(p1,1e8); lc50(p2,1e8)

The values are 0.362 and 0.748 mg/l.

Notice that the small difference between the LC50.2d for the two sets, results in a factor
2 difference in the NEC. This illustrates the unstability of extrapolation while the LC50 is
still decreasing.

6.4.3 Question:

a Can you make a plot for the two sets where the data points and the predicted lc50-
time curves are shown?

b What is the mean squared deviation of the data from the curve?
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Answer:

Type: shregr(‘‘lc50’’,p1,tc1) . The mean squared deviation is zero, because three
LC50 values exactly determine three parameter values.

Hint:

Use DEBtool/lib/regr/shregr for this purpose; Don’t forget to make a path to this sub-
directory.

6.4.4 Question:

What is the best estimate for LC50.5d and LC50.6d if LC50.4d = 3 mg/l, given data set
1?

Hint:

Use DEBtool/lib/regr/nrregr to estimate the parameters, then lc50 to obtain the LC50.5d.
Check the result graphically.

Answer:

Type: tc=[tc1;4 3]; p=nrregr(‘‘lc50’’,p1,tc); lc50(p,[5 6]);

The answer is LC50.5d = 2.25 mg/l and LC50.6d = 1.78 mg/l.
The graphical check is done by typing:

shregr options(‘‘default’’); shregr(‘‘lc50’’,p,tc);

The fit should by quite good, but the mean squared deviation is not longer zero.

6.5 Extrapolation of effects from one compound to

that of another

Motivation:

For an optimal experimental design, not-yet-known effect levels of a compound must be
guessed from known effects of another compound, with a similar mode of action; such
expectations can also be useful for environmental risk assessment, in absence of adequate
data. We here deal with effects on survival on the same test species and otherwise identical
conditions.

Given:

The Pow = 107, NEC = 1 mg/l, killing rate = 1 mg−1 l d−1 and elimination rate = 0.01 d−1

for compound 1, and the Pow = 108 for compound 2.
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6.5.1 Question:

What is the expected LC50.2d for compound 2?

Hint:

First obtain the three toxicity parameters for compound 2, then use these values to obtain
the LC50.2d using DEBtool’s function lc50.

Answer:

The ratio of the Pow values for compound 2 and 1 is 108/107 = 10. The toxicity parameters
for compound 2 are: NEC = 1/10 mM, killing rate = 10 mM−1 d−1 and the elimination rate
= 0.01/

√
10 d−1. The LC50.2d is found from DEBtool/tox/lc50, by typing: lc50([0.1,

10, 0.01/sqrt(10)],2)

The result is 35.63 mM. The LC50.2d for compound 1 is 113.27 mM.

6.6 Effects of pH on toxicity

Motivation:

Quite a few chemical compounds tend to ionize in water, and affect the pH. The toxicity
of the molecular and the ionic form are not necessarily ideltical. The response surface of
such compounds differs from that of non-ionizing compounds.

Given:

The ionization product constant is 8.0, observation times [0 1 2 3 4] days, the concentra-
tions [0 2 4 8 16] mM, the pH values [7.8 7.7 7.4 7.0 6.5] and the number of surviving
individuals

10 10 10 10 10
10 10 10 9 1
10 10 10 1 0
10 10 5 0 0
10 10 1 0 0

6.6.1 Question:

What are the NECs of the molecular and the inonic forms?

Hint:

Use DEBtool/tox/formortph; inspect mydata fomortph for an example of application.
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Answer:

Type: t = [0 1 2 3 4]’;

cph = [0 2 4 8 16; 7.8 7.7 7.4 7.0 6.5]’;

S = [10 10 10 10 10; 10 10 10 10 8; 10 10 10 8 4; 10 10 9 6 1; 10 9 6 3 0];

p = [1e-8 0.1 4 .2 0.5 1 8.0; 0 1 1 1 1 1 0]’;

q = nmsurv2("fomortph",p,t,cph,S);

p = scsurv2("fomortph",q,t,cph,S);

The routine nmsurv2 does not come to full conversion, but that is not necessary to
get scsurv2 converged. The calculations lead to NECS of 0.00665 and 0.00678 mM for the
molecular and ionic forms. Notice that the number of estimated parameters is rather large
relative to the available information from data. This implies substantial uncertainty in the
values. Check this with the standard deviations.

6.7 Effects on reproduction

Motivation:

Reproduction is frequently most sensitive to toxic agents. Several modes of action can be
delineated.

Given:

The cumulative number of offspring per female daphnid at 21 d, for concentrations concen-
tration 0, 1, 2, 4, 16 mM are 600, 650, 550, 40, and 2, for the different concentrations. The
following physiological parameters are known: the von Bertalanffy growth rate is 0.1 d−1,
the scaled length at birth is 0.13, and at puberty 0.42, and the energy investment ratio is
1.

6.7.1 Question:

Calculate the NEC and the EC50 for the different modes of action (assimilation rate,
maintenance costs, growth costs, reproduction costs, neonate survival). How does the
EC50 behave as a function of exposure time?

Hint:

Use DEBtox; fill data, select mode of action, press flag to start calculations; look under
“statistics” to obtain EC50, change number of days to see ultimate EC50. Change mode
of action and repeat. Notice that the data information is extremely small in this case (no
information how effects built up in time, so the shape of the dose-response curve is the
only source of information for the elimination rate), which makes the numerical procedures
somewhat tricky and the standard deviations unreliable.
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Answer:

The result is
mode of action NEC EC50.21 d EC50.∞ d
assimiliation 1.61 2.72 2.58
maintenance costs 1.38 2.75 2.20
growth costs ∗ 2.95 2.82
reproduction costs 0.50 2.50 0.81
neonate survival 1.38 2.51 1.82

∗: Effects via growth resulted in slow kinetics, with a NEC-time of 11.72 mM d.
The NEC differ by a factor 3 for the various modes of action.

6.8 Interpolation methods for sublethal effects

Motivation:

Fitting a sigmoid curve (usually the log-logistic one) to response data and obtaining an
ECx from that is still popular practice. The result becomes sensitive to the model choice
if x deviates from 50 %. The goodness of fit is just one criterion to test the “validity” of
the model, and this criterion is not the strongest one. Consistency arguments come first
in importance.

Given:

A 36 d body growth test on fish; we fit a log-logistic curve to the body length as a function

of the concentration test compound. So L(c, t) = L0,t

(
1 + (c/ce,t)

βt
)−1

, where the blank

body length L0,t, the EC50 ce,t and the slope parameter βt are parameters, which can (in
principle) all depend on exposure time t.

6.8.1 Question:

If the concentration-response curve happens to be log-logistic at 36 d as well as e.g. at 37
d, what are the implicit assumptions about the growth process?

Answer:

If the change in body length is always of the log-logistic type, it amounts to:

d

dt
lnL(c, t) =

d

dt
lnL0,t − βt

(
d
dt

ln βt
)

ln c
ce,t
− d

dt
ln ce,t

1 + (ce,t/c)βt

The first observation is that relative growth at any given concentrations is that in the blank
minus something that depends on concentration and exposure time.
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Since it is very probable that d
dt
ce,t < 0 and d

dt
βt > 0, growth at any given concentration

ceases before that in the blank. Suppose that shrinking can be excluded. While d
dt
L(c, t) =

0, we must have that

d

dt
lnL0,t = βt

(
d
dt

ln βt
)

ln c
ce,t
− d

dt
ln ce,t

1 + (ce,t/c)βt

We here see an unpleasant implication: the change in the EC50 and the slope depends on
the behaviour in the blank. This line of thought should be worked out in further detail.
The aim of this exercise has been to show that fitting a sigmoid curve to length data comes
with implicit assumptions of the growth process.

Given:

A 21 d Daphnia reproduction test; we fit a log-logistic curve to the cumulative number
of offspring per female as a function of the concentration test compound. So N(c, t) =

N0,t

(
1 + (c/ce,t)

βt
)−1

, where the blank number N0,t, the EC50 ce,t and the slope parameter

βt are parameters, which can (in principle) all depend on exposure time t. Also is given
that the reproduction rate around 21 d is constant for each female in the blank.

6.8.2 Question:

If the concentration-response curve happens to be log-logistic at 21 d, will it be still log-
logistic at 22 d (with possibly different parameters)?

Hint:

Make use of the fact that the reproduction rates become constant and that toxicity pa-
rameters should not depend on blank parameters.

Answer:

We find that for Ṙ(c, t) = d
dt
N(c, t) and Ṙ0,t = d

dt
N0,t, and N0,t = N0,t0 + (t − t0)Ṙ0 for

some appropriate value for t0 (after which the reproduction in the blank is constant):

d

dt
lnN(c, t) =

d

dt
lnN0,t − βt

(
d
dt

ln βt
)

ln c
ce,t
− d

dt
ln ce,t

1 + (ce,t/c)βt

Ṙ(c, t)

N(c, t)
=

Ṙ0

N0,t0 + (t− t0)Ṙ0

− βt

(
d
dt

ln βt
)

ln c
ce,t
− d

dt
ln ce,t

1 + (ce,t/c)βt

Suppose that some exposure time exists after which the reproduction rate at concentration
c remains constant, so N(c, t) = Nc,t0 + (t− t0)Rc. The slope and the EC50 can then also
no longer change ( d

dt
βt = 0 and d

dt
ce,t = 0), because the slope and the EC50 would become

functions of N0,t0 , while they should be independent of what happens in the blanc. So
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the second term disappears, and the equation applies for all t, which results in Nc,t0/Ṙc =
N0,t0/Ṙ0. This result cannot hold, because it depends on an arbitrary choice for t0.

Generally, the concentration-response curve at 22 d cannot be of the log-logistic type
if that at 21 d is of the log-logistic type. This devalidates the routine application of this
response curve in cases like this, and all the statistics that comes after the assumption that
this model would be correct. The present derivation rests on the existence of moments in
time after which the reproduction rate does not change. This is consistent with empirical
data; this line of thought might be generalized to relax this condition. For the time being,
again the conclusion must be that fitting a sigmoid curve to the cumulative number of
offspring per female comes with far reaching implicit assumptions about the reproduction
process. In this case it might well be that the result can only imply non-sense.

6.9 Effects on populations

Motivation:

Although most ecotoxicity tests focus on effects on individuals, the societal interest is
in that on populations (and ecosystems). Population consequences can be derived the-
oretically from effects on individuals, but for a few species (algae, bacteria, duck weed)
standardized bioassays directly deal with populations.

Given:

The inoculated population density is 103 cells/ml. After 2 days, the population densities
in concentrations 0, 1, 2, 4, 8, 16 mM were 100, 109, 98, 60, 10 and 2 times 103 cells/ml.

6.9.1 Question:

Give the NEC, the EC50.2d and the EC50.∞d if the compound would affect initial mor-
tality, mortality or the growth rate.

Hint:

Use DEBtox and select the various modes of action. The “adaptation” model assumes
initial mortality only; the “hazard” model assumes that mortality continues during expo-
sure.

Answer:

The result is
mode of action NEC EC50.2d EC50.∞d unit

init mort 2.85 4.34 4.34 mM
mort. 2.98 4.31 2.99 mM
growth rate 3.39 4.21 3.41 mM
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Notice that the EC50 does not depend on time if the compound affects initial mortality
only. The NECs differ just a little, the EC50.2d even less; the EC50.∞d is more sensitive
to the mode of action. The goodness of fit is excellent in all cases.

6.9.2 Question:

Does the population always grow exponentially for all modes of action?

Hint:

What do we mean by exponentially growing populations? The growth of living cells, of the
change of the measured densities? Do the measurements represent the number of living
cells?

Answer:

Population growth is assumed to be exponential in the blank, although this cannot be
checked in the present numerical example. The living populations are always growing ex-
ponentially at all modes of action, but the measurements include dead cells. This means
that the measured populations deviate from exponential growth if the effects are on mor-
tality and initial mortality. The population growth rate (of the living population) equals
that in the blank for effects on initial mortality.
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Chapter 7

Extensions of DEB models

7.1 Responses to starvation

Motivation:

The response to starvation is basic to life and to DEB models. The two classes of DEB
models, production and assimilation models, differ most in the implementation of responses
to starvation, as is discussed in chapter 11.

7.1.1 Question:

Rank the different responses to starvation with respect to the length of the starvation
period or the increased saving of reserves.

Hint:

These responses to starvation area discussed in section 4.1.

Answer:

The reponses can be ranked as follows

-1 Migration to avoid (predictable) starvation.

0 No response; the reserve will decrease according to the same rules as during feeding.
Growth will cease at a certain reserve density threshold; reproduction continues.

1 Allocation to maturity maintenance and reproduction is ceased at a certain reserve
density threshold; this threshold is decreased to the no-growth threshold.

2 Structure is degraded to pay somatic maintenance costs.

3 Somatic maintenance is reduced by ceasing activety (dormancy) and allocation to
heating (in endotherms).
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4 Suicide reproduction or spore formation. The individual sacrifices itself for the benefit
of its progeny.

7.2 Stomach dynamics

Motivation:

Some implications of the DEB theory are really straightforeward, and worth noticing for
creative use of the concepts.

Given:

Suppose that stomach dynamics follows a first order dynamics as given by (7.66).

7.2.1 Question:

How long does it take to empty a fully filled stomach to 100α% while starving?

Hint:

What is the value for the scaled functional response f during starvation? Can you solve
the ordinary differential equation for stomach contents as a function of time? Solve the
equation where stomach contents equals α times its original value.

Answer:

The waiting time is t = −[Msm]V 1/3 lnα/{J̇Xm}.

7.2.2 Question:

How does the gut residence time behave as a function of structural volume?

Hint:

Use eqn (3.6) on {81}.

Answer:

Gut residence time is also proportional to length.

7.2.3 Question:

Suppose that an adult human mother weighs 64 kg, and her baby 4 kg. The mother eats
three times a day. How frequently should a baby eat to experience similar fluctuations in
stomach and gut contents?
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Hint:

Suppose that food density is constant or high; does the ratio of weights equal the ratio of
structural volumes? Are any parameters left in the ratio of the waiting times till a certain
fraction of the initial stomach filling?

Answer:

The ratio of the waiting times for stomach emptying of mother and baby is (4/64)1/3 = 2.5,
which implies that the baby has to eat 2.5 × 3 = 7.5 times a day to experience the same
fluctuations. It is because the baby takes milk, and the mother less nutritial food, that
the baby can do with a lower frequency.
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Chapter 8

Co-variation of parameters

8.1 Identification of primary parameters

Motivation:

Which parameters are primary and which are compound is, from a mathematical perspec-
tive, arbitrary, but not from a biological one.

Given:

The standard DEB model applies.

8.1.1 Question:

Which parameters are primary and which are compound and why in the following cases?

a What is the relationship between the half saturation coefficient K, the maximum
specific feeding rate {J̇XAm}, and the maximum specific searching rate {Ḟm}?

b What is the relationship between the maximum specific feeding rate {J̇XAm}, the
maximum specific assimilation rate {J̇EAm} and the yield of reserve on food yEX?

c What is the relationship between the energy conductance v̇, the maximum specific
assimilation rate {J̇EAm} and the maximum reserve capacity [Em]?

Hint:

Are the parameters intensive or design parameters? How does this relate to the choice for
primary versus compound parameters?

Answer:

K = {J̇XAm}/{Ḟm} is a compound parameter, but {J̇XAm} = {J̇EAm}/yEX is that as well,
like Em = {J̇EAm}/v̇. Since yEX is basic to the biochemical machinery, which all eukaryotes
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share, it must a primary parameter and is intensive. {J̇EAm} is preferred above {J̇XAm}
as primary parameter, because it is evolutionarily easier to change the feeding capacity
than the assimilation capacity. Moreover, it is more close to the maximum length, which
depends on maintenance. The searching rate {Ḟm} is close to the underlying processes,
compared with the half-saturation coefficient K and is an intensive parameter. The energy
conductance has a direct relationship with the mechanism of reserve mobilisation, so it
is chosen to be a primary parameter, and is intensive. Moreover the maximum reserve
capacity shares the property with the maximum length as being a ratio of incomming and
outgoing fluxes; both ratios are compound parameters. With the choice of {Ḟm}, yEX ,
{J̇EAm}, v̇ as primary parameter and K, {J̇XAm}, Em as compound parameters, only one
primary parameter is a design parameter, the rest is intensive.

8.2 Scaling relationships

Motivation:

The implied scaling relationships are very powerful properties in applications of DEB
theory.

8.2.1 Question:

What are the three properties of the standard DEB model that imply the scaling relation-
ships with no degree of freedom?

Hint:

The standard DEB model is mechanistic, meaning that all its parameters have a clear
relationship with the underlying physics and chemistry. This allows a classification of
parameters in two categories. Which categories?

Answer:

1) All parameters can be classified as intensive or design parameters.
2) Simply functions of design parameters are intensive.
3) Maximum length is a function of only one design parameter.

8.2.2 Question:

What are the assumptions in the standard toxicity module of DEB theory that specify how
(lethal and sublethal) effects of chemicals vary with the partition coefficient?

Hint:

How are such effects specified for a single chemical compound? What is fugacity?
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Answer:

1) Effects per molecule inside the individual don’t depend of the partition coefficient.
2) Toxico-kinetics is quantified by the one-compartment model (or extensions of it)
3) This model is based on fugacity, which implies a skew symmetry for the roles of both
media.

8.3 Effect of changes in parameter values

Motivation:

Scaling relationships for the standard DEB model depend on parameter values of the
reference, so a ‘typical’ isomorph; a correct prediction of trends in parameter values among
(isomorphic) species is essential for all useful models for eco-energetics.

8.3.1 Question:

Can you predict affects of changes in parameter values on body size scaling relationships
of isomorphs? Have special attention for κ and the maintenance costs.

Hint:

Use DEBtool-animal routine “shscale”. Have a look at the manual for odd effects of the
size of the window that you are using on the appearance of log-log plots. The book gives
more relationships and the book is not exhaustive too.

Answer:

If you decrease κ, investment to reproduction increases, but this does not necessarily
translate into more offspring. This is because food uptake is coupled to size, and so to
growth, and offspring has to be produced from food (via reserves). An increase maintenance
has many consequences for scaling relationships and size control.
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Chapter 9

Living together

9.1 Chemostat dynamics

Motivation:

Chemostats are attractive for their symplicity as a system, and as a device to obtain
biological material with a prescibed physiological state. Yet their dynamics is sometimes
counter-intuitive. DEB theory can be used for very practical purposes, such a optimisation
of industrial bioproduction.

9.1.1 Question:

a How does the biomass at equilibrium depend on small throughput rates?

b How does this behaviour depend on the maintenance costs?

Hint:

Use DEBtool-microbe routine “shchemostat”, after changing the maintenance costs in the
parameter file “pars.m”.

Answer:

You will see that biomass density is at maximum in absence of maintenance, while it is
zero in presence of maintenance. The rate at which biomass density increases as a function
of very small troughput rates depend on the specific maintenance costs.

9.1.2 Question:

a How does the equilibrium concentration of product depend on the throughput rate?

b Can the relationship have more than one optimum?
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Hint:

Modify the coefficients that relate product formation to assimilation, maintenance and
growth. Try (small) negative values for coupling to assimilation and growth.

Answer:

Product density can be a rather complex function of throughput rate if the coupling coef-
ficients to assimilation and growth become negative.

9.1.3 Question:

Can you work out a scheme for optimal product (e.g. penicillin) formation in terms of
financial costs and profits?

Hint:

Assign financial costs for substrate and medium in the input, and product and biomass in
the output. Make a few simplifying assumptions, such as the costs of processing product
and biomass are independent of the concentration (or density), the costs associated with
substrate in the effluent and with stirring and cooling is zero. The financial costs for
biomass can be positive or negative, depending on its fate. Optimize the result as function
of the concentration of substrate in the feed, the throughput rate and the size of the
reactor.

Answer:

The substrate balance in the chemostat is

d

dt
X = (Xr −X)ḣ− XjXAm

X +K
XV

which gives X∗V = (Xr−X)(X+K)ḣ
XjXAm

at steady state. The specific growth rate equals the

throughput rate at steady state, so ṙ∗ = f∗k̇E−gk̇M
f∗+g

= ḣ. So f ∗ ≡ X∗

X∗+K
= g k̇M+h

k̇E−h
and

X = K f
1−f . Product formation (see page 148 of the DEB book) equals: jP = ζPM k̇Mg +

ζPAk̇Ef
∗ + ζPGgḣ. The product balance in the chemostat is

d

dt
XP = XV jP −XP ḣ

so that the steady state product concentration is X∗P = X∗V jP/ḣ. This completes the
biological part. Reactor’s design parameters are the reactor volume V , the substrate
concentration in the feed Xr and the throughput rate ḣ.

The balance equation for the financial costs is simple: The total money flux is

Ṡ = $P J̇P − $X J̇X − $V J̇V
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where $∗ represents the mole-specific financial costs, and the molar product flux J̇P =
ḣV X∗P , the molar substrate flux in the feed J̇X = ḣV Xr, and the biomass flux J̇V = ḣV X∗V .

We now maximize S as function of the design parameters of the reactor. Since the
money flux is linear in the reactor volume, the latter cannot be optimised yet. A realistic
inclusion of the financial costs for stirring and cooling into the money flux can define the
optimal size of the reactor.

This scheme can be made more realistic by including costs for labour and maintenance
of the reactor, climate control, marketing, processing of substrate and medium in the
effluent, or regeneration costs for the medium, for instance. Some costs, such as costs for
transportation and for the medium, can be included in the coefficients $∗ as long as they
are linear in the amounts.

The next step is to code the money flux and maximise is numerically given estimates
of the parameter values. This is not difficult in Octave or Matlab.

This application illustrates the typical situation that the DEB theory has to be sup-
plemented with application-specific components to arrive at practical results.

9.1.4 Question:

Can you relate the fluxes to and from the chemostat at steady state to the concentrations
of substrate, biomass and product; How does this compare to the fluxes to and from a
isomorph?

Hint:

Use DEBtool-microbe routine “shflux” to study the numerical behaviour of fluxes to and
from the chemostat, and compare with DEBtool-animal routine “shflux” for isomorphs.
Notice that the fluxes are plotted against the throughput rate for chemostats, and against
scaled length for isomorphs.

Answer:

Since the chemostat is dwelled by V1-morphs, their total biomass can be conceived of as
a single individual. The unusual elements are that this ‘super’ V1-morph grows without
becoming bigger, because the chemostat has a drain, and that the growth rate is human-
controlled rather that the result of physiological processes that can be manipulated in an
indirect way only.

9.2 Alga-grazer systems

Motivation:

Nutrient limited prey-predator systems can make a smooth transition to a symbiosis, due to
the excretion of carbohydrates and nutrients. The dynamics of these compounds affect the
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prey-predator dynamics profoundly, which makes studies of prey-predator without nutrient
dynamics rather academic.

9.2.1 Question:

What is the affect of a decrease in grazing activity at constant affinity for dissolved nu-
trients, hydrocarbons and substrate in a alga-grazer community that lives in a chemostat
with a constant input of substrate and nutrient?

Hint:

Use DEBtool-symbi routines “shsubstr2graz” and “shthrou2graz” to study effects of vary-
ing grazing intensity, substrate input and throughput rates. These routines take a consid-
erable amount of computing time.

Answer:

It is possible to find combinations of parameter values for which the grazer hardly benefits
(i.e. becomes more abundant) from grazing: it is killing the “chicken with the golden
eggs”. It is also possible to find parameter combinations for which the prey/predator ratio
is rather insensitive to changes in substrate, which corresponds with a weak homeostasis
situation. This marks the transition to a symbiontic system that can be captured with a
single structural component.



Chapter 10

Evolution

10.1 Homeostasis

Motivation:

DEB theory is basically about the evolution of homeostasis. To capture the gradual process
of its evolutionary ontogeny, the theory delineates 5 types in Section 1.2: strong, weak,
structural, thermal and acquisition. The list could be extended with the reduction of the
number of reserves.

10.1.1 Question:

Why do bacteria need many reverse and animals, which evolved from them, only one?

Hint:

What is the primary function of reserve and how does this relate to types of substrate?

Answer:

The primary function of reserve is to incorporate metabolic memory. Bacteria live off many
substrate, which they take up from the environment independently, while animals live off
other organisms that already have all substrates that they need.

10.2 Reorganisation

Motivation:

As a consequence of an increasing homeostasis during evolution, life did become increasing
depending on itself and symbiosis became increasingly important.
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10.2.1 Question:

Why are the processes of partitionning and merging of reserves key to evolution?

Hint:

What do theses processes mean?

Answer:

Partitionning, and especially merging, occurred frequently as part of the process of coupling
and uncoupling of reserves, so increasing and decreasing the number of reserves, such that
the overall dynamics is not affected. Organisational simplicity of integrated units is a
functional constraint for robustness and regulatory systems.

10.3 Evolutionary memory

Motivation:

The reason why a metabolic system functions in a particular way is because it evolved
from earlier metabolic systems.

10.3.1 Question:

Give an animal and a plant example that illustrates its evolutionary history.

Hint:

Many examples could be given. What was the diet of the first mammals? Are all plants
green?

Answer:

The earliest mammals were carnivores, which explains why feeding on plants was rather
problematic and the conversion efficiency from grass to cow is that low. The chemical
composition of plants and animals differ more than within animals. Increasing the num-
ber of reserves was not an option (for several reasons). Quite a few plant taxa are not
green and can’t, therefore use photons as energy substrate. The earliest eukaryotes where
heterotrophic; plants acquired phototrophy by symbiogenesis, but without refraining from
heterotrophy. To mention another example: All plants and animals have mitochondria,
which they acquired by symbiogenesis.



Chapter 11

Evaluation

11.1 Empirical evidence

Motivation:

Explore the links between empirical evidence and DEB theory

Given:

The list of empirical facts, as presented in Table 11.1 of the comments on the DEB book.

11.1.1 Question:

Explain why the empirical evidence F2, G1 and O4 is compatible with the standard DEB
model.

Hint:

The most important aspects of the metabolic organization are here: the individual is
composed of structure and reserve and the κ-rule.

Answer:

The explanations are given in Tables 11.2 and 11.3 of the comments.

11.2 Production versus assimilation models

Motivation:

Most models for energetics in the literature are time-dependent Static Energy Budget
models, also known as net-production models or Scope for Growth (SfG) models.
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11.2.1 Question:

a What is the characterizing property of production models?

b How do production models typically deal with overhead costs for growth?

Answer:

SfG models typically ignore the embryo stage and subtract respiration from assimilation
before considering production. Maintenance is typically identified with respiration (but
not in DEB theory). Explicitly or not, growth overheads are typically included in respira-
tion, which points to a fundamental problem in SfG-models. They also have problems to
combine weak homeostasis with reserve, see Section 11.3 of the comments on topological
alternatives.
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